首页> 外文期刊>INFORMS journal on computing >Separation and Extension of Cover Inequalities for Conic Quadratic Knapsack Constraints with Generalized Upper Bounds
【24h】

Separation and Extension of Cover Inequalities for Conic Quadratic Knapsack Constraints with Generalized Upper Bounds

机译:具有广义上界的二次二次背包约束的覆盖不等式的分离和扩展

获取原文
获取原文并翻译 | 示例

摘要

Motivated by addressing probabilistic 0-1 programs we study the conic quadratic knapsack polytope with generalized upper bound (GUB) constraints. In particular, we investigate separating and extending GUB cover inequalities. We show that, unlike in the linear case, determining whether a cover can be extended with a single variable is NP-hard. We describe and compare a number of exact and heuristic separation and extension algorithms which make use of the structure of the constraints. Computational experiments are performed for comparing the proposed separation and extension algorithms. These experiments show that a judicious application of the extended GUB cover cuts can reduce the solution time of conic quadratic 0-1 programs with GUB constraints substantially.
机译:通过解决概率0-1程序的动机,我们研究了具有广义上限(GUB)约束的圆锥形二次背包多面体。特别是,我们调查了GUB覆盖不平等的分离和扩展。我们证明,与线性情况不同,确定是否可以使用单个变量扩展封面是NP-hard。我们描述并比较了许多利用约束结构的精确和启发式分离与扩展算法。进行计算实验以比较所提出的分离和扩展算法。这些实验表明,明智地应用扩展的GUB覆盖切口可以大大减少带有GUB约束的二次二次0-1程序的求解时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号