首页> 外文OA文献 >Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling
【2h】

Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling

机译:基于马尔可夫链蒙特卡罗采样的GLUE综合分布式水文模型的不确定性评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, there has been an increase in the application of distributed, physically-based and integrated hydrological models. Many questions regarding how to properly calibrate and validate distributed models and assess the uncertainty of the estimated parameters and the spatially-distributed responses are, however, still quite unexplored. Especially for complex models, rigorous parameterization, reduction of the parameter space and use of efficient and effective algorithms are essential to facilitate the calibration process and make it more robust. Moreover, for these models multi-site validation must complement the usual time validation. In this study, we develop, through an application, a comprehensive framework for multi-criteria calibration and uncertainty assessment of distributed physically-based, integrated hydrological models. A revised version of the generalized likelihood uncertainty estimation (GLUE) procedure based on Markov chain Monte Carlo sampling is applied in order to improve the performance of the methodology in estimating parameters and posterior output distributions. The description of the spatial variations of the hydrological processes is accounted for by defining a measure of model performance that includes multiple criteria and spatially-distributed information. An initial sensitivity analysis is conducted on the model to avoid overparameterisation and to increase the robustness of the approach. It is demonstrated that the employed methodology increases the identifiability of the parameters and results in satisfactory multi-variable simulations and uncertainty estimates. However, the parameter uncertainty alone cannot explain the total uncertainty at all the sites, due to limitations in the distributed data included in the model calibration. The study also indicates that properly distributed information of discharge is particularly crucial in model calibration and validation.
机译:近年来,分布式,基于物理的和综合的水文模型的应用有所增加。然而,关于如何正确地校准和验证分布式模型以及评估估计参数的不确定性和空间分布响应的许多问题仍未得到充分探索。特别是对于复杂的模型,严格的参数设置,减少参数空间以及使用高效有效的算法对于促进校准过程并使之更加鲁棒至关重要。此外,对于这些模型,多站点验证必须补充通常的时间验证。在这项研究中,我们通过应用程序开发了一个综合框架,用于基于分布式物理的综合水文模型的多标准校准和不确定性评估。应用了基于马尔可夫链蒙特卡洛采样的广义似然不确定性估计(GLUE)程序的修订版,以提高该方法在估计参数和后验输出分布方面的性能。通过定义包括多个标准和空间分布信息的模型性能度量来解释水文过程的空间变化。在模型上进行了初始灵敏度分析,以避免参数过大并提高方法的鲁棒性。结果表明,所采用的方法提高了参数的可识别性,并获得了令人满意的多变量模拟和不确定性估计。但是,由于模型校准中包括的分布式数据的限制,仅凭参数不确定性并不能解释所有站点的总不确定性。研究还表明,正确分配放电信息对于模型校准和验证尤为重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号