首页> 外文OA文献 >Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling
【2h】

Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling

机译:利用自适应马尔可夫链蒙特卡罗采样的广义似然不确定性估计(GLUE)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the last few decades hydrologists have made tremendous progress in using dynamic simulation models for the analysis and understanding of hydrologic systems. However, predictions with these models are often deterministic and as such they focus on the most probable forecast, without an explicit estimate of the associated uncertainty. This uncertainty arises from incomplete process representation, uncertainty in initial conditions, input, output and parameter error. The generalized likelihood uncertainty estimation (GLUE) framework was one of the first attempts to represent prediction uncertainty within the context of Monte Carlo (MC) analysis coupled with Bayesian estimation and propagation of uncertainty. Because of its flexibility, ease of implementation and its suitability for parallel implementation on distributed computer systems, the GLUE method has been used in a wide variety of applications. However, the MC based sampling strategy of the prior parameter space typically utilized in GLUE is not particularly efficient in finding behavioral simulations. This becomes especially problematic for high-dimensional parameter estimation problems, and in the case of complex simulation models that require significant computational time to run and produce the desired output. In this paper we improve the computational efficiency of GLUE by sampling the prior parameter space using an adaptive Markov Chain Monte Carlo scheme (the Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm). Moreover, we propose an alternative strategy to determine the value of the cutoff threshold based on the appropriate coverage of the resulting uncertainty bounds. We demonstrate the superiority of this revised GLUE method with three different conceptual watershed models of increasing complexity, using both synthetic and real-world streamflow data from two catchments with different hydrologic regimes.
机译:在过去的几十年中,水文学家在使用动态模拟模型进行水文系统分析和理解方面取得了巨大进步。但是,使用这些模型进行的预测通常是确定性的,因此,它们专注于最可能的预测,而没有对相关不确定性的明确估计。这种不确定性是由不完整的过程表示,初始条件的不确定性,输入,输出和参数错误引起的。广义似然不确定性估计(GLUE)框架是在蒙特卡洛(MC)分析的背景下结合贝叶斯估计和不确定性传播来表示预测不确定性的首次尝试之一。由于GLUE方法具有灵活性,易于实现的特性以及适合在分布式计算机系统上并行实现的特性,因此已被广泛应用于各种应用中。但是,通常在GLUE中使用的先验参数空间的基于MC的采样策略在查找行为仿真时并不是特别有效。对于高维参数估计问题,以及在需要大量计算时间才能运行并产生所需输出的复杂仿真模型的情况下,这尤其成为问题。在本文中,我们通过使用自适应马尔可夫链蒙特卡洛方案(随机混合复杂大都会(SCEM-UA)算法)对先验参数空间进行采样来提高GLUE的计算效率。此外,我们提出了一种替代策略,根据对结果不确定性范围的适当覆盖,确定临界阈值。我们使用来自不同流域的两个流域的合成流和现实流数据,通过三种复杂度不断增加的概念分水岭模型,论证了这种修正的GLUE方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号