首页> 外文OA文献 >Counting Edge-Injective Homomorphisms and Matchings on Restricted Graph Classes
【2h】

Counting Edge-Injective Homomorphisms and Matchings on Restricted Graph Classes

机译:计算限制图类的边 - 内射同态和匹配

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the parameterized problem of counting all matchings with exactly k edges in a given input graph G. This problem is #W[1]-hard (Curticapean, ICALP 2013), so it is unlikely to admit f(k)poly(n) time algorithms. We show that #W[1]-hardness persists even when the input graph G comes from restricted graph classes, such as line graphs and bipartite graphs of arbitrary constant girth and maximum degree two on one side.To prove the result for line graphs, we observe that k-matchings in line graphs can be equivalently viewed as edge-injective homomorphisms from the disjoint union of k paths of length two into (arbitrary) host graphs. Here, a homomorphism from H to G is edge-injective if it maps any two distinct edges of H to distinct edges in G. We show that edge-injective homomorphisms from a pattern graph H can be counted in polynomial time if H has bounded vertex-cover number after removing isolated edges. For hereditary classes H of pattern graphs, we obtain a full complexity dichotomy theorem by proving that counting edge-injective homomorphisms, restricted to patterns from H, is #W[1]-hard if no such bound exists.Our proofs rely on an edge-colored variant of Holant problems and a delicate interpolation argument; both may be of independent interest.
机译:我们考虑参数化问题,即计算给定输入图G中正好有k个边的所有匹配项。这个问题是#W [1] -hard(Curticapean,ICALP 2013),因此不太可能允许f(k)poly(n )时间算法。我们证明,即使输入图G来自受限制的图类,例如,线图和任意恒定周长为2且最大度为2的二部图,#W [1]硬度仍然存在。为证明线图的结果,我们观察到,从长度为2的k条路径的不相交联合到(任意)主图中,折线图中的k匹配可以等效地视为边注同态。在这里,如果将H的任意两个不同的边映射到G中的不同的边,则从H到G的同态就是边注性的。我们证明,如果H限制了顶点,则可以在多项式时间内计算出模式图H的边注同态。 -去除孤立边后盖数。对于模式图的遗传类H,我们通过证明计数边缘注入同态(仅限于H的模式)是#W [1]-困难的(如果不存在这样的界),则获得了全复杂二分定理。我们的证明依赖于边缘Holant问题的彩色变体和精细的插值参数;两者都可能具有独立利益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号