首页> 外文期刊>Theory of computing systems >Counting Edge-injective Homomorphisms and Matchings on Restricted Graph Classes
【24h】

Counting Edge-injective Homomorphisms and Matchings on Restricted Graph Classes

机译:限制图类上边缘注入同态和匹配的计数

获取原文
获取原文并翻译 | 示例

摘要

We consider the #W[1]-hard problem of counting all matchings with exactly k edges in a given input graph G; we prove that it remains #W[1]-hard on graphs G that are line graphs or bipartite graphs with degree 2 on one side. In our proofs, we use that k-matchings in line graphs can be equivalently viewed as edge-injective homomorphisms from the disjoint union of k length-2 paths into (arbitrary) host graphs. Here, a homomorphism from H to G is edge-injective if it maps any two distinct edges of H to distinct edges in G. We show that edge-injective homomorphisms from a pattern graph H can be counted in polynomial time if H has bounded vertex-cover number after removing isolated edges. For hereditary classes H of pattern graphs, we complement this result: If the graphs in H have unbounded vertex-cover number even after deleting isolated edges, then counting edge-injective homomorphisms with patterns from H is #W[1]-hard. Our proofs rely on an edge-colored variant of Holant problems and a delicate interpolation argument; both may be of independent interest.
机译:我们考虑#W [1]-困难的问题,即计算给定输入图G中具有正好k个边的所有匹配;我们证明它在图G上仍然是#W [1] -hard,图G是一侧为2度的线图或二部图。在我们的证明中,我们使用折线图中的k匹配可以等效地视为从k个长度为2的路径的不相交的并集到(任意)主图中的边注同态。在这里,如果将H的任意两个不同的边映射到G中的不同的边,则从H到G的同态就是边注性的。我们证明,如果H限制了顶点,则可以在多项式时间内计算出模式图H的边注同态。 -去除孤立边后盖数。对于模式图的遗传类H,我们对这个结果进行补充:如果即使删除了孤立的边后,H中的图也具有无穷大的顶点覆盖数,那么用H的模式对边注入同态进行计数是#W [1] -hard。我们的证明依赖于Holant问题的边缘变体和精细的插值参数。两者都可能具有独立利益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号