首页> 外文OA文献 >Precomputing Strategy for Hamiltonian Monte Carlo Method Based on Regularity in Parameter Space
【2h】

Precomputing Strategy for Hamiltonian Monte Carlo Method Based on Regularity in Parameter Space

机译:基于maTLaB的哈密顿蒙特卡罗方法预计算策略   参数空间的规律性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Markov Chain Monte Carlo (MCMC) algorithms play an important role instatistical inference problems dealing with intractable probabilitydistributions. Recently, many MCMC algorithms such as Hamiltonian Monte Carlo(HMC) and Riemannian Manifold HMC have been proposed to provide distantproposals with high acceptance rate. These algorithms, however, tend to becomputationally intensive which could limit their usefulness, especially forbig data problems due to repetitive evaluations of functions and statisticalquantities that depend on the data. This issue occurs in many statisticcomputing problems. In this paper, we propose a novel strategy that exploitssmoothness (regularity) of parameter space to improve computational efficiencyof MCMC algorithms. When evaluation of functions or statistical quantities areneeded at a point in parameter space, interpolation from precomputed values orprevious computed values is used. More specifically, we focus on HamiltonianMonte Carlo (HMC) algorithms that use geometric information for fasterexploration of probability distributions. Our proposed method is based onprecomputing the required geometric information on a set of grids beforerunning sampling information at nearby grids at each iteration of HMC. Sparsegrid interpolation method is used for high dimensional problems. Tests oncomputational examples are shown to illustrate the advantages of our method.
机译:马尔可夫链蒙特卡洛(MCMC)算法在处理不可思议的概率分布的统计推断问题中起着重要作用。近来,已经提出了许多MCMC算法,例如哈密顿量蒙特卡罗(HMC)和黎曼流形HMC,以提供具有高接受率的远距离建议。但是,这些算法在计算上趋于密集,这可能会限制其用途,尤其是对于大数据问题而言,这是由于对函数和依赖于数据的统计量进行了重复评估。许多统计计算问题中都会发生此问题。在本文中,我们提出了一种新的策略,该方法利用参数空间的平滑度(规则性)来提高MCMC算法的计算效率。当需要在参数空间中的某个点进行函数或统计量的评估时,将使用根据预先计算的值或先前计算的值进行插值。更具体地说,我们关注汉密尔顿蒙特卡罗(HMC)算法,该算法使用几何信息来更快地探索概率分布。我们提出的方法是基于在HMC的每次迭代之前在附近的网格上运行采样信息之前,在一组网格上预先计算所需的几何信息。稀疏插值方法用于解决高维问题。对计算示例进行了测试,以说明我们方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号