We consider {\em profit-maximization} problems for {\em combinatorialauctions} with {\em non-single minded valuation functions} and {\em limitedsupply}. We obtain fairly general results that relate the approximability of theprofit-maximization problem to that of the corresponding {\emsocial-welfare-maximization} (SWM) problem, which is the problem of finding anallocation $(S_1,\ldots,S_n)$ satisfying the capacity constraints that hasmaximum total value $\sum_j v_j(S_j)$. For {\em subadditive valuations} (andhence {\em submodular, XOS valuations}), we obtain a solution with profit$\OPT_\swm/O(\log c_{\max})$, where $\OPT_\swm$ is the optimum social welfareand $c_{\max}$ is the maximum item-supply; thus, this yields an $O(\logc_{\max})$-approximation for the profit-maximization problem. Furthermore,given {\em any} class of valuation functions, if the SWM problem for thisvaluation class has an LP-relaxation (of a certain form) and an algorithm"verifying" an {\em integrality gap} of $\al$ for this LP, then we obtain asolution with profit $\OPT_\swm/O(\al\log c_{\max})$, thus obtaining an$O(\al\log c_{\max})$-approximation. For the special case, when the tree is a path, we also obtain an incomparable$O(\log m)$-approximation (via a different approach) for subadditivevaluations, and arbitrary valuations with unlimited supply. Our approach forthe latter problem also gives an $\frac{e}{e-1}$-approximation algorithm forthe multi-product pricing problem in the Max-Buy model, with limited supply,improving on the previously known approximation factor of 2.
展开▼
机译:我们考虑具有{\ em非单一思维的估值函数}和{\ em有限供应}的{\ em组合拍卖}的{\ em利润最大化}问题。我们获得了相当普遍的结果,该结果将利润最大化问题的逼近度与相应的{\ emsocial-welfare-maximization}(SWM)问题的逼近度联系起来,这是找到满足以下条件的分配$(S_1,\ ldots,S_n)$的问题具有最大总值$ \ sum_j v_j(S_j)$的容量约束。对于{\ em次可加性估值}(因此,{\ em次可加性估值,XOS估值}),我们获得了利润为$ \ OPT_ \ swm / O(\ log c _ {\ max})$的解决方案,其中$ \ OPT_ \ swm $是最佳社会福利,$ c _ {\ max} $是最大物品供给;因此,对于利润最大化问题,这产生了$ O(\ logc _ {\ max})$近似值。此外,给定{\ em any}类评估函数,如果该评估类的SWM问题具有LP松弛(某种形式)并且算法“验证” $ \ al $的{\ em积分缺口},此LP,则我们获得利润为$ \ OPT_ \ swm / O(\ al \ log c _ {\ max})$的解,从而获得$ O(\ al \ log c _ {\ max})$的近似值。对于特殊情况,当树是路径时,我们还获得了无与伦比的$ O(\ log m)$-近似值(通过不同的方法)用于子加性估值,以及具有无限供应的任意估值。对于后一种问题,我们的方法还为最大购买量下的最大购买模型中的多产品定价问题提供了一个\\ frac {e} {e-1} $近似算法,并以先前已知的近似因子2进行了改进。
展开▼