首页> 外文OA文献 >A Geometric Approach to Radial Correlation Type Problems
【2h】

A Geometric Approach to Radial Correlation Type Problems

机译:径向相关型问题的几何解法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A radial probability measure is a probability measure with a density (withrespect to the Lebesgue measure) which depends only on the distances to theorigin. Consider the Euclidean space enhanced with a radial probabilitymeasure. A correlation problem concerns showing whether the radial measure ofthe intersection of two symmetric convex bodies is greater than the product ofthe radial measures of the two convex bodies. A radial measure satisfying thisproperty is said to satisfy the correlation property. A major question in thisfield is about the correlation property of the (standard) Gaussian measure. Themain result in this paper is a theorem suggesting a sufficient condition for aradial measure to satisfy the correlation property. A consequence of the maintheorem will be a proof of the correlation property of the Gaussian measure.
机译:径向概率测度是密度(相对于Lebesgue测度)仅取决于到原点的距离的概率测度。考虑用径向概率测度增强的欧几里得空间。一个相关问题涉及显示两个对称凸体的相交的径向尺寸是否大于两个凸体的径向尺寸的乘积。满足该性质的径向度量被称为满足相关性。该领域的主要问题是关于(标准)高斯测度的相关性。本文的主要结果是一个定理,提出了满足辐照度条件的满足相关性的充分条件。主定理的结果将证明高斯测度的相关性。

著录项

  • 作者

    Memarian, Yashar;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号