首页> 外文OA文献 >Potential Networks, Contagious Communities, and Understanding Social Network Structure
【2h】

Potential Networks, Contagious Communities, and Understanding Social Network Structure

机译:潜在的网络,传染的社区和理解社会   网络结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we study how the network of agents adopting a particulartechnology relates to the structure of the underlying network over which thetechnology adoption spreads. We develop a model and show that the network ofagents adopting a particular technology may have characteristics that differsignificantly from the social network of agents over which the technologyspreads. For example, the network induced by a cascade may have a heavy-taileddegree distribution even if the original network does not. This provides evidence that online social networks created by technologyadoption over an underlying social network may look fundamentally differentfrom social networks and indicates that using data from many online socialnetworks may mislead us if we try to use it to directly infer the structure ofsocial networks. Our results provide an alternate explanation for certainproperties repeatedly observed in data sets, for example: heavy-tailed degreedistribution, network densification, shrinking diameter, and network communityprofile. These properties could be caused by a sort of `sampling bias' ratherthan by attributes of the underlying social structure. By generating networksusing cascades over traditional network models that do not themselves containthese properties, we can nevertheless reliably produce networks that containall these properties. An opportunity for interesting future research is developing new methods thatcorrectly infer underlying network structure from data about a network that isgenerated via a cascade spread over the underlying network.
机译:在本文中,我们研究采用特定技术的代理网络如何与技术采用所传播的基础网络的结构相关。我们开发了一个模型,并表明采用特定技术的代理商网络可能具有与该技术所传播的代理商社会网络明显不同的特征。例如,即使原始网络没有,由级联引发的网络也可能具有重尾度分布。这提供了证据,表明通过技术采用而在底层社交网络上创建的在线社交网络可能看起来与社交网络根本不同,并且表明如果我们尝试使用来自许多在线社交网络的数据来直接推断社交网络的结构,可能会误导我们。我们的结果为在数据集中重复观察到的某些属性提供了另一种解释,例如:重尾度分布,网络致密化,直径缩小和网络社区概况。这些属性可能是由某种“抽样偏差”引起的,而不是由潜在社会结构的属性引起的。通过使用传统网络模型上本身不包含这些属性的级联来生成网络,我们仍然可以可靠地生成包含所有这些属性的网络。进行有趣的未来研究的机会是,开发新的方法,这些方法可以通过有关基础网络的级联生成的网络数据正确地推断基础网络结构。

著录项

  • 作者

    Schoenebeck, Grant;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号