首页> 外文OA文献 >Self-Consistency Requirements of the Renormalization Group for Setting the Renormalization Scale
【2h】

Self-Consistency Requirements of the Renormalization Group for Setting the Renormalization Scale

机译:重整化群的自我一致性要求   重整化量表

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In conventional treatments, predictions from fixed-order perturbative QCDcalculations cannot be fixed with certainty due to ambiguities in the choice ofthe renormalization scale as well as the renormalization scheme. In this paperwe present a general discussion of the constraints of the renormalization group(RG) invariance on the choice of the renormalization scale. We adopt the RGbased equations, which incorporate the scheme parameters, for a generalexposition of RG invariance, since they simultaneously express the invarianceof physical observables under both the variation of the renormalization scaleand the renormalization scheme parameters. We then discuss the self-consistencyrequirements of the RG, such as reflexivity, symmetry, and transitivity, whichmust be satisfied by the scale-setting method. The Principle of MinimalSensitivity (PMS) requires the slope of the approximant of an observable tovanish at the renormalization point. This criterion provides ascheme-independent estimation, but it violates the symmetry and transitivityproperties of the RG and does not reproduce the Gell-Mann-Low scale for QEDobservables. The Principle of Maximum Conformality (PMC) satisfies all of thedeductions of the RG invariance - reflectivity, symmetry, and transitivity.Using the PMC, all non-conformal $\{\beta^{\cal R}_i\}$-terms (${\cal R}$stands for an arbitrary renormalization scheme) in the perturbative expansionseries are summed into the running coupling, and one obtains a unique,scale-fixed, scheme-independent prediction at any finite order. The PMC scalesand the resulting finite-order PMC predictions are both to high accuracyindependent of the choice of initial renormalization scale, consistent with RGinvariance. [...More in the text...]
机译:在常规治疗中,由于重新归一化量表和重新归一化方案的选择含糊不清,因此无法确定地固定来自固定阶次扰动QCD计算的预测。在本文中,我们对重归一化组(RG)不变性对重归一化量表选择的约束进行了一般性讨论。我们采用基于RG的方程式,其中包含了方案参数,用于RG不变性的一般说明,因为它们同时表示物理可观测值的不变性,这既涉及重归一化规模的变化,也涉及归一化方案参数的变化。然后,我们讨论了RG的自洽性要求,例如自反性,对称性和可传递性,这些必须通过比例设置方法来满足。最小灵敏度原理(PMS)要求在重新归一化点处可观察到的消失点的近似斜率。该标准提供了与化学无关的估计,但是它违反了RG的对称性和传递性属性,并且没有重现QEbservables的Gell-Mann-Low量表。最大保形原理(PMC)满足RG不变性的所有推论-反射率,对称性和传递性。使用PMC,所有非保形的$ \ {\ beta ^ {\ cal R} _i \} $-项(将扰动展开级数中的$ {\ cal R} $表示为一个任意的重归一化方案,将其加和到运行耦合中,然后以任意有限阶数获得唯一的,与规模无关的,与方案无关的预测。 PMC尺度和所得的有限阶PMC预测均具有较高的准确性,而与初始重整尺度的选择无关,与RG不变性一致。 [...更多文字...]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号