We consider unsupervised estimation of mixtures of discrete graphical models,where the class variable corresponding to the mixture components is hidden andeach mixture component over the observed variables can have a potentiallydifferent Markov graph structure and parameters. We propose a novel approachfor estimating the mixture components, and our output is a tree-mixture modelwhich serves as a good approximation to the underlying graphical model mixture.Our method is efficient when the union graph, which is the union of the Markovgraphs of the mixture components, has sparse vertex separators between any pairof observed variables. This includes tree mixtures and mixtures of boundeddegree graphs. For such models, we prove that our method correctly recovers theunion graph structure and the tree structures corresponding tomaximum-likelihood tree approximations of the mixture components. The sampleand computational complexities of our method scale as $\poly(p, r)$, for an$r$-component mixture of $p$-variate graphical models. We further extend ourresults to the case when the union graph has sparse local separators betweenany pair of observed variables, such as mixtures of locally tree-like graphs,and the mixture components are in the regime of correlation decay.
展开▼
机译:我们考虑离散图形模型的混合的无监督估计,其中隐藏了与混合成分相对应的类变量,并且观察变量上的每个混合成分可能具有潜在不同的马尔可夫图结构和参数。我们提出了一种新的方法来估计混合物成分,我们的输出是一个树状混合物模型,可以很好地逼近基础图形模型混合物。当并集图(即混合物的马尔可夫图的并集)时,我们的方法很有效组件之间的任何一对观测变量之间都有稀疏的顶点分隔符。这包括树形混合图和有界度图的混合图。对于这样的模型,我们证明了我们的方法正确地恢复了混合成分的最大似然树近似对应的联合图结构和树结构。对于$ p $变量图形模型的$ r $分量混合物,我们方法的样本和计算复杂度按$ \ poly(p,r)$缩放。我们进一步将结果扩展到联合图在任何一对观测变量之间稀疏的局部分隔符(例如局部树状图的混合),并且混合分量处于相关衰减状态的情况。
展开▼