首页> 外文OA文献 >Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
【2h】

Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design

机译:强盗背景下的高斯过程优化:无悔与讽刺   实验设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many applications require optimizing an unknown, noisy function that isexpensive to evaluate. We formalize this task as a multi-armed bandit problem,where the payoff function is either sampled from a Gaussian process (GP) or haslow RKHS norm. We resolve the important open problem of deriving regret boundsfor this setting, which imply novel convergence rates for GP optimization. Weanalyze GP-UCB, an intuitive upper-confidence based algorithm, and bound itscumulative regret in terms of maximal information gain, establishing a novelconnection between GP optimization and experimental design. Moreover, bybounding the latter in terms of operator spectra, we obtain explicit sublinearregret bounds for many commonly used covariance functions. In some importantcases, our bounds have surprisingly weak dependence on the dimensionality. Inour experiments on real sensor data, GP-UCB compares favorably with otherheuristical GP optimization approaches.
机译:许多应用程序需要优化未知,嘈杂的函数,该函数的评估成本很高。我们将此任务形式化为多武装匪徒问题,其中的收益函数是从高斯过程(GP)或RKHS规范较低的样本中提取的。我们解决了为此设置导出后悔界限的重要开放问题,这暗示了GP优化的新颖收敛速度。 Weanaze GP-UCB是一种基于上置信度的直观算法,并在最大信息增益方面限制了它的累积遗憾,从而在GP优化与实验设计之间建立了新颖的联系。此外,通过将后者约束为算子谱,我们为许多常用的协方差函数获得了显式的sublinearregret边界。在某些重要情况下,我们的边界对维数的依赖令人惊讶地弱。在实际传感器数据上进行的实验中,GP-UCB与其他启发式GP优化方法相比具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号