首页> 外文OA文献 >Confidence interval methods in discrete event computer simulation: Theoretical properties and practical recommendations.
【2h】

Confidence interval methods in discrete event computer simulation: Theoretical properties and practical recommendations.

机译:离散事件计算机模拟中的置信区间方法:理论性质和实用建议。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most of steady state simulation outputs are characterized by some degree of dependency between successive observations at different lags measured by the autocorrelation function. In such cases, classical statistical techniques based on independent, identical and normal random variables are not recommended in the construction of confidence intervals for steady state means. Such confidence intervals would cover the steady state mean with probability different from the nominal confidence level. For the last two decades, alternative confidence interval methods have been proposed for stationary simulation output processes. These methods offer different ways to estimate the variance of the sample mean with final objective of achieving coverages equal to the nominal confidence level. Each sample mean variance estimator depends on a number of different parameters and the sample size. In assessing the performance of the confidence interval methods, emphasis is necessarily placed on studying the actual properties of the methods in an empirical context rather than proving their mathematical properties. The testing process takes place in the context of an environment where certain statistical criteria, which measure the actual properties, are estimated through Monte Carlo methods on output processes from different types of simulation models. Over the past years, however, different testing environments have been used. Different methods have been tested on different output processes under different sample sizes and parameter values for the sample mean variance estimators. The diversity of the testing environments has made it difficult to select the most appropriate confidence interval method for certain types of output processes. Moreover, a catalogue of the properties of the confidence interval methods offers limited direct support to a simulation practitioner seeking to apply the methods to particular processes. Five confidence interval methods are considered in this thesis. Two of them were proposed in the last decade. The other three appeared in the literature in 1983 and 1984 and constitute the recent research objects for the statistical experts in simulation output analysis. First, for the case of small samples, theoretical properties are investigated for the bias of the corresponding sample mean variance estimators on AR(1) and AR(2) time series models and the delay in queue in the M/M/1 queueing system. Then an asymptotic comparison for these five methods is carried out. The special characteristic of the above three processes is that the 5th lag autocorrelation coefficient is given by known difference equations. Based on the asymptotic results and the properties of the sample mean variance estimators in small samples, several recommendations are given in making the following decisions: I) The selection of the most appropriate confidence interval method for certain types of simulation outputs. II) The determination of the best parameter values for the sample mean variance estimators so that the corresponding confidence interval methods achieve acceptable performances. III) The orientation of the future research in confidence interval estimation for steady state autocorrelated simulation outputs.
机译:大部分稳态模拟输出的特征在于,通过自相关函数测量的不同滞后下的连续观测值之间存在一定程度的依赖性。在这种情况下,在建立稳态均值的置信区间时,不建议使用基于独立,相同和正常随机变量的经典统计技术。这样的置信区间将以不同于标称置信度的概率覆盖稳态均值。在过去的二十年中,已经提出了用于固定仿真输出过程的替代置信区间方法。这些方法提供了不同的方法来估计样本均值的方差,最终目标是实现覆盖率等于名义置信水平。每个样本平均方差估计量取决于许多不同的参数和样本大小。在评估置信区间方法的性能时,必须着重在经验的背景下研究方法的实际属性,而不是证明其数学属性。测试过程是在环境中进行的,在该环境中,通过蒙特卡洛方法对来自不同类型的仿真模型的输出过程进行估算的统计标准(用于测量实际属性)。但是,在过去的几年中,已经使用了不同的测试环境。对于样本平均方差估计量,在不同的样本大小和参数值下,在不同的输出过程中测试了不同的方法。测试环境的多样性使得难以为某些类型的输出过程选择最合适的置信区间方法。此外,置信区间方法的属性目录为寻求将方法应用于特定过程的模拟从业人员提供了有限的直接支持。本文考虑了五种置信区间方法。在过去十年中提出了其中两个建议。另外三个出现在1983年和1984年的文献中,构成了统计专家在模拟输出分析中的最新研究对象。首先,对于小样本的情况,研究了AR(1)和AR(2)时间序列模型上相应样本均方差估计量的偏差以及M / M / 1排队系统中队列的延迟的理论特性。 。然后对这五种方法进行渐近比较。以上三个过程的特点是,第五个滞后自相关系数由已知的差分方程式给出。根据渐近结果和小样本中样本均方差估计量的性质,在做出以下决策时会给出一些建议:I)为某些类型的模拟输出选择最合适的置信区间方法。 II)确定样本平均方差估计量的最佳参数值,以便相应的置信区间方法达到可接受的性能。 III)稳态自相关模拟输出的置信区间估计的未来研究方向。

著录项

  • 作者

    Kevork Ilias;

  • 作者单位
  • 年度 1990
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号