首页> 外文OA文献 >An Investigation of Finite Sample Behavior of Confidence Interval Estimation Procedures in Computer Simulation
【2h】

An Investigation of Finite Sample Behavior of Confidence Interval Estimation Procedures in Computer Simulation

机译:置信区间估计程序在计算机仿真中的有限样本行为研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Investigated are the small sample behavior and convergence properties of confidence interval estimators (CIE's) for the mean of a stationary discrete process. We consider CIE's arising from nonoverlapping batch means, overlapping batch means, and standardized time series, all of which are commonly used in discrete-event simulation. For a specific CIE, the performance measures of interest include the coverage probability, and the expected value and variance of the half-length. We use both empirical and analytical methods to make detailed comparisons regarding the behavior of the CIE's for a variety of stochastic processes. All of the CIE's under study are asymptotically valid; however, they are usually invalid for small sample sizes. We find that for small samples, the bias of the variance parameter estimator figures significantly in CIE coverage performance-the less bias the better. A Secondary role is played by the Marginal distribution of the stationary process. Not all CIE's are equal - some require fewer observations before manifesting the properties for CIE validity
机译:对于固定离散过程的平均值,研究了置信区间估计量(CIE)的小样本行为和收敛性质。我们认为CIE是由不重叠批均值,重叠批均值和标准化时间序列产生的,所有这些均常用于离散事件模拟中。对于特定的CIE,感兴趣的性能指标包括覆盖率,半身的期望值和方差。我们使用经验方法和分析方法对各种随机过程中CIE的行为进行详细比较。所有正在研究的CIE都是渐近有效的。但是,它们通常对于小样本量无效。我们发现,对于较小的样本,方差参数估计量的偏差在CIE覆盖性能中具有明显的意义-偏差越小越好。次要作用是平稳过程的边际分布。并非所有CIE都是相等的-有些在显示CIE有效性属性之前需要较少的观察

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号