首页> 外文OA文献 >Atmospheric pressure metal-organic vapour phase epitaxial growth of InAs/GaSb strained layer superlattices
【2h】

Atmospheric pressure metal-organic vapour phase epitaxial growth of InAs/GaSb strained layer superlattices

机译:Inas / Gasb应变层超晶格的大气压金属 - 有机气相外延生长

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The importance of infrared (IR) technology (for detection in the 3-5 μm and 8-14 μm atmospheric windows) has spread from military applications to civilian applications since World War II. The commercial IR detector market in these wavelength ranges is dominated by mercury cadmium telluride (MCT) alloys. The use of these alloys has, however, been faced with technological difficulties. One of the materials that have been tipped to be suitable to replace MCT is InAs/InxGa1-xSb strained layer superlattices (SLS’s). Atmospheric pressure metal-organic vapour phase epitaxy (MOVPE) has been used to grow InAs/GaSb strained layer superlattices (SLS’s) at 510 °C in this study. This is a starting point towards the development of MOVPE InAs/InxGa1-xSb SLS’s using the same system. Before the SLS’s could be attempted, the growth parameters for GaSb were optimised. Growth parameters for InAs were taken from reports on previous studies conducted using the same reactor. Initially, trimethylgallium, a source that has been used extensively in the same growth system for the growth of GaSb and InxGa1-xSb was intended to be used for gallium species. The high growth rates yielded by this source were too large for the growth of SLS structures, however. Thus, triethylgallium (rarely used for atmospheric pressure MOVPE) was utilized. GaSb layers (between 1 and 2 μm thick) were grown at two different temperatures (550 °C and 510 °C) with a varying V/III ratio. A V/III ratio of 1.5 was found to be optimal at 550 °C. However, the low incorporation efficiency of indium into GaSb at this temperature was inadequate to obtain InxGa1-xSb with an indium mole fraction (x) of around 0.3, which had previously been reported to be optimal for the performance of InAs/InxGa1-xSb SLS’s, due to the maximum splitting of the valence mini bands for this composition. The growth temperature was thus lowered to 510 °C. This resulted in an increase in the optimum V/III ratio to 1.75 for GaSb and yielded much higher incorporation efficiencies of indium in InxGa1-xSb. However, this lower growth temperature also produced poorer surface morphologies for both the binary and ternary layers, due to the reduced surface diffusion of the adsorbed species. An interface control study during the growth of InAs/GaSb SLS’s was subsequently conducted, by investigating the influence of different gas switching sequences on the interface type and quality. It was noted that the growth of SLS’s without any growth interruptions at the interfaces leads to tensile strained SLS’s (GaAs-like interfaces) with a rather large lattice mismatch. A 5 second flow of TMSb over the InAs surface and a flow of H2 over GaSb surface yielded compressively strained SLS’s. Flowing TMIn for 1 second and following by a flow of TMSb for 4 seconds over the GaSb surface, while flowing H2 for 5 seconds over the InAs surface, resulted in SLS’s with GaAs-like interfacial layers and a reduced lattice mismatch. Temperature gradients across the surface of the susceptor led to SLS’s with different structural quality. High resolution x-ray diffraction (HRXRD) was used to determine the thicknesses as well as the type of interfacial layers. The physical parameters of the SLS’s obtained from simulating the HRXRD spectra were comparable to the parameters obtained from cross sectional transmission electron microscopy (XTEM) images. The thicknesses of the layers and the interface type played a major role in determining the cut-off wavelength of the SLS’s.
机译:自第二次世界大战以来,红外(IR)技术(用于在3-5μm和8-14μm大气窗口中进行检测)的重要性已从军事应用扩展到民用应用。在这些波长范围内的商业红外探测器市场主要由碲化汞镉(MCT)合金主导。但是,这些合金的使用面临技术难题。 InAs / InxGa1-xSb应变层超晶格(SLS)是适合替换MCT的一种材料。在这项研究中,大气压金属有机气相外延(MOVPE)已用于在510°C的温度下生长InAs / GaSb应变层超晶格(SLS)。这是使用同一系统开发MOVPE InAs / InxGa1-xSb SLS的起点。在尝试SLS之前,应先对GaSb的生长参数进行优化。 InAs的生长参数取自使用同一反应器进行的先前研究报告。最初,三甲基镓(一种已在同一生长系统中广泛用于GaSb和InxGa1-xSb的生长的来源)打算用于镓物种。然而,这种来源产生的高增长率对于SLS结构的增长而言太大了。因此,利用了三乙基镓(很少用于大气压MOVPE)。 GaSb层(厚度在1和2μm之间)在两个不同的温度(550°C和510°C)下以可变的V / III比生长。发现在550℃下V / III比为1.5是最佳的。但是,在此温度下铟向GaSb的掺入效率低,不足以得到铟摩尔分数(x)约为0.3的InxGa1-xSb,以前据报道这对于InAs / InxGa1-xSb SLS的性能是最佳的,这是因为该成分的价迷你带最大分裂。因此,生长温度降低到510℃。这导致GaSb的最佳V / III比增加到1.75,并且铟在InxGa1-xSb中的掺入效率更高。但是,由于被吸附物质的表面扩散减少,这种较低的生长温度也为二元和三元层产生了较差的表面形态。随后,通过研究不同气体切换顺序对界面类型和质量的影响,进行了InAs / GaSb SLS生长期间的界面控制研究。值得注意的是,SLS的生长在界面处没有任何生长中断,会导致具有较大晶格失配的拉伸应变SLS(类似于GaAs的界面)。在InAs表面上经过5秒的TMSb流动,在GaSb表面上经过H2的流动产生了压缩应变的SLS。 TMIn流动1秒,然后TMSb在GaSb表面流动4秒,而H2在InAs表面流动5秒,导致SLS具有类似GaAs的界面层,并减少了晶格失配。基座表面的温度梯度导致SLS具有不同的结构质量。高分辨率X射线衍射(HRXRD)用于确定厚度以及界面层的类型。通过模拟HRXRD光谱获得的SLS的物理参数与通过横截面透射电子显微镜(XTEM)图像获得的参数相当。层的厚度和界面类型在确定SLS的截止波长方面起着重要作用。

著录项

  • 作者

    Miya Senzo Simo;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号