首页> 外文OA文献 >Fast and robust methods for non-rigid registration of medical images
【2h】

Fast and robust methods for non-rigid registration of medical images

机译:用于医学图像的非刚性配准的快速且稳健的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The automated analysis of medical images plays an increasingly significant part in many clinical applications. Image registration is an important and widely used technique in this context. Examples of its use include, but are not limited to: longitudinal studies, atlas construction,udstatistical analysis of populations and automatic or semi-automatic parcellation of structures. Although image registration has been subject of active research since the 1990s, it is a challenging topic with many issues that remain to be solved. This thesis seeks to address some ofudthe open challenges of image registration by proposing fast and robust methods based on the widely utilised and well established registration framework of B-spline Free-Form Deformations (FFD).udIn this work, a statistical method has been incorporated into the FFD model, in order to obtain a fast learning-based method that produces results that are in accordance with the underlying variability of the population under study. Several comparisons between different statistical analysis methods that can be used in this context are performed. Secondly, a method to improveudthe convergence of the B-Spline FFD method by learning a gradient projection using principal component analysis and linear regression is proposed. Furthermore, a robust similarity measure is proposed that enables the registration of images affected by intensity inhomogeneities and images with pathologies, e.g. lesions and/or tumours.udAll the methods presented in this thesis have been extensively evaluated using both synthetic data and large datasets of real clinical data, such as Magnetic Resonance (MR) images of the brain and heart.
机译:医学图像的自动分析在许多临床应用中扮演着越来越重要的角色。在这种情况下,图像配准是一项重要且广泛使用的技术。它的使用示例包括但不限于:纵向研究,图集构建,人口的 u统计分析以及结构的自动或半自动分解。尽管自1990年代以来图像配准一直是积极研究的主题,但这是一个具有挑战性的主题,许多问题有待解决。本文旨在通过基于广泛使用且建立良好的B样条自由形式变形(FFD)的配准框架提出快速而可靠的方法来解决图像配准的一些公开挑战。 ud在本文中,一种统计方法为了获得一种基于快速学习的方法,该方法所产生的结果与所研究人群的潜在变异性相一致,已将其纳入FFD模型。在此情况下可以使用的不同统计分析方法之间进行了几次比较。其次,提出了一种通过利用主成分分析和线性回归学习梯度投影来提高B样条FFD方法收敛性的方法。此外,提出了鲁棒的相似性度量,其使得能够配准受强度不均匀性影响的图像和具有病理学(例如病理学)的图像。 ud本论文中介绍的所有方法均已使用合成数据和真实临床数据的大型数据集(例如脑部和心脏的磁共振(MR)图像)进行了广泛评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号