首页> 外文OA文献 >Time-scale and memory in financial time series: a data mining approach
【2h】

Time-scale and memory in financial time series: a data mining approach

机译:金融时间序列中的时间尺度和记忆:数据挖掘方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Financial time series analysis is a highly empirical discipline concerned with the evolutionudof the price of an asset. The key feature that distinguishes financial time seriesudfrom time series of other scientific domains is the element of uncertainty that they contain.udThe recent financial crisis has tested the capabilities of several existing modelsudand evidenced the need for methods able to deal with the high complexity and theudnon-stationary characteristics of the data observed in financial markets. The objectiveudof this thesis is to provide a better understanding of financial time series, to enhance theudabilities of existing methods, especially their predictive performance but also to developudnovel methods which aim to provide inferences in the presence of non-stationarities andudreduce the complexity of high dimensional tasks. To this end, the memory in the magnitudeudand the memory in the sign of logarithmic returns is studied and a novel modeludis constructed whose fit suggests that long memory might be present in the volatilityudprocess and that when memory in the sign increases so does the memory in the magnitude.udAdditionally, wavelets are employed for that they operate in both the time andudfrequency domains. Thus, classic time series models and other methods extensively usedudin the time domain are deployed across different frequency bands to combine knowledgeudfrom both domains and provide information that might not be accessible otherwise. Inudparticular, the volatility process is modeled in the time domain after some of the noisyudbehavior that exists in high frequencies, which might also contain outliers, is neglected.udMoreover, the volatility process is modeled directly in the wavelet domain in a scale-by-udscale manner in an effort to improve the forecasting performance. Furthermore, weudattempt to detect changes in the autocorrelation function of a process, which resultudin changes in the spectral density function, by monitoring the wavelet variance acrossuddifferent multiresolution scales.
机译:金融时间序列分析是一门高度经验的学科,与资产价格的演变 ud有关。将财务时间序列与其他科学领域的时间序列区分开的关键特征是它们所包含的不确定性因素。 ud最近的金融危机已经测试了几种现有模型的功能, udd证明了需要有能力应对这种不确定性的方法。金融市场中观察到的数据具有很高的复杂性和非平稳特性。本文的目的是提供对金融时间序列的更好理解,以增强现有方法的可靠性,尤其是其预测性能,同时还要开发旨在在存在非平稳性和非平稳性时提供推论的方法。降低高维任务的复杂性。为此,研究了幅度记忆 ud和对数收益率符号记忆,并构建了一个新的模型 udis,其拟合表明波动 ud过程中可能存在较长的记忆,并且当符号记忆增加时 ud此外,由于使用了小波,因此它们在时域和ud频域中都起作用。因此,在时域中广泛使用的经典时间序列模型和其他方法被部署在不同的频带上,以结合来自两个域的知识并提供否则可能无法访问的信息。特别是,在忽略了高频中存在的一些嘈杂的 udbehaviour(可能也包含离群值)之后,在时域中对波动过程进行了建模。 ud此外,在小波域中,直接在小波域中对波动过程进行了建模。逐个 udscale方式,以提高预测性能。此外,我们试图通过监视跨不同分辨率的小波方差来检测过程的自相关函数的变化,从而导致频谱密度函数的变化。

著录项

  • 作者

    Tzouras Spilios;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号