首页> 外文期刊>International journal of soft computing >Statistical Data Mining Approach with Asymmetric Conditionally Volatility Model in Financial Time Series Data
【24h】

Statistical Data Mining Approach with Asymmetric Conditionally Volatility Model in Financial Time Series Data

机译:金融时间序列数据中具有非对称条件波动率模型的统计数据挖掘方法

获取原文
获取原文并翻译 | 示例

摘要

The objective of this study is to investigate the possible existence and stability of the day of the week effect and measures the mean and conditional volatility in testing the degree of market efficiency in the BSE Sensitivity Index and S&P CNX Nifty Index over the period spanning from July 1, 1997 to March 31,2012 by using asymmetric TGARCH Model and introduced dummy variables into the mean equation and conditional variance equation the assess the distributional properties between Monday to Friday. Unit Root test, Augmented Dickey Fuller (ADF) test, Phillips-Peron (PP) test, Ljung Box Q were applied. The result of the study indicates the return and volatility for both the index are scattered over a period of time. Apart from that the risk averse investors are willing to commit huge amount of transaction with higher risk appetite because the market digest the information and react immediately towards news shocks. Therefore, the seasonality changes and interexchange arbitrage opportunity in emerging markets makes the investors to create various trading strategies in both the market. Overall, the professionals market watchers who are aware of the daily return pattern should adjust the timing of their buying and selling to take advantage of the effect.
机译:这项研究的目的是调查7月期间的BSE敏感度指数和S&P CNX Nifty指数中的市场效率程度,以调查周日效应的可能存在和稳定性,并测量均值和条件波动率。在1997年1月1日至2012年3月31日之间,使用非对称TGARCH模型并将虚拟变量引入均值方程和条件方差方程,以评估星期一至星期五之间的分布特性。进行了单位根测试,增强迪基·富勒(ADF)测试,菲利普斯-佩隆(PP)测试,Ljung BoxQ。研究结果表明,这两个指数的收益率和波动率分散在一段时间内。除此之外,规避风险的投资者还愿意以较高的风险偏好进行大量交易,因为市场会消化信息并立即对新闻冲击做出反应。因此,新兴市场的季节性变化和交易所间套利机会使投资者在两个市场上都制定了各种交易策略。总体而言,了解每日回报模式的专业市场观察者应调整购买和出售的时机,以利用这种影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号