首页> 外文OA文献 >Impact of electrically assisted turbocharging on the transient response of an off-highway diesel engine
【2h】

Impact of electrically assisted turbocharging on the transient response of an off-highway diesel engine

机译:电辅助涡轮增压对非公路柴油机瞬态响应的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Engine boosting via turbocharging is a method to increase the engine power output with minimal or no increase in engine parasitic, frictional and pumping losses. Turbocharging in conjunction with engine down-sizing and down-speeding allows a reduction of engine fuel consumption, while maintaining a high engine power output. However, turbocharging introduces a lag in engine transient response, caused by the finite amount of time required by the turbocharger to accelerate, which has to be minimized.udElectric turbocharger assistance consists of coupling an electric motor/generator to a standard turbocharger. The scope of the motor/generator is to increase the power available to accelerate the rotor assembly, so that the time to boost is reduced. The motor/generator could also be utilized to brake the turbocharger to control boost and avoid over-speeds, thus replacing the conventional waste-gate. Furthermore, electric assistance allows turbocompounding to be implemented. Turbocompounding improves the engine efficiency by utilizing the turbine and motor/generator to recuperate additional exhaust flow energy.udIn this thesis, the electric turbocharger assistance impact on the turbocharger and engine performance is studied. An electrically assisted turbocharger prototype has been developed by industrial partners and it has been tested by the author of this thesis. The performance of the turbocharger turbine and motor/generator has been characterized over the full speed range and the impact of the electric assistance on the turbine flow has been investigated experimentally. It has not been possible to characterize the turbine up to choking conditions, so the data has been extrapolated via a mean-line model. The performance data obtained has been utilized to generate a model of the assisted turbocharger, which has been coupled to a one-dimensional model of a non-highway 7-litre diesel engine. This model has been utilized to study the impact of electric turbocharger assistance on the engine transient performance.udThe electrical machine characterization revealed that the switched reluctance motor/generator operates efficiently up to a speed of 135,000 rev/min, making it one of the fastest running switched reluctance machines of this size. The peak machine efficiency is 93% (excluding the turbocharger bearing losses) and the maximum power output measured is 5.3 kW in generating mode and 4.3 kW in motoring mode. The motor/generator rotor aerodynamic drag loss has been calculated via computational fluid dynamics software and has been found to be 63 W at 140,000 rev/min.udVia a novel experimental technique, it has been possible to characterize the turbocharger turbine down to an expansion ratio of 1.00. This experiment revealed that the mass flow rate drops to zero at an expansion ratio higher than unity and that below this critical pressure ratio the turbine flow is reversed. The characterization of the turbine during speed transients showed that the operating point on the performance map deviates from the quasi-steady line. This indicates that minor unsteady effects occur in the turbine and exhaust manifold flow. A further experiment revealed that the motor/generator torque oscillations have a negligible impact on the turbine performance.udThe engine simulations showed that the ideal electric assistance motoring power for this application is in the 5 to 10 kW range. A 5 kW machine reduces the engine speed drop, which occurs when the engine load is suddenly increased, by up to 83%, depending on the initial load and load step size, and reduces the time to recover the original speed by up to 86%. The simulations also revealed that electric assistance is more effective than the turbine variable geometry system in improving the engine transient response, but the variable geometry system is useful to optimize boost for engine specific fuel consumption over different engine loading conditions.
机译:通过涡轮增压的发动机增压是一种在不增加或不增加发动机寄生,摩擦和泵气损失的情况下增加发动机功率输出的方法。涡轮增压与发动机尺寸缩小和速度降低相结合,可以减少发动机燃油消耗,同时保持较高的发动机功率输出。但是,涡轮增压会导致发动机瞬态响应出现滞后,这是由涡轮增压器加速所需的有限时间引起的,必须将其最小化。 ud涡轮增压器的辅助功能包括将电动机/发电机与标准涡轮增压器相连。电动机/发电机的范围是增加可用于加速转子组件的功率,从而减少加速时间。电动机/发电机还可以用来制动涡轮增压器,以控制增压并避免超速,从而取代了传统的废气门。此外,电辅助可以实现涡轮复合。涡轮复合通过利用涡轮和电动机/发电机来回收额外的排气流能量来提高发动机效率。 ud本文中,研究了电动涡轮增压器辅助对涡轮增压器和发动机性能的影响。工业合作伙伴已经开发出一种电动辅助涡轮增压器原型,并且该原型作者已经对其进行了测试。涡轮增压器涡轮和电动机/发电机的性能已在整个转速范围内进行了表征,并且已通过实验研究了电助力对涡轮流量的影响。一直到扼流圈都无法表征涡轮机,因此已通过均线模型推断了数据。获得的性能数据已用于生成辅助涡轮增压器的模型,该模型已与非公路7升柴油发动机的一维模型耦合。该模型已被用于研究电动涡轮增压器辅助对发动机瞬态性能的影响。 ud电机的特性表明,开关磁阻电动机/发电机能够以高达135,000转/分钟的速度高效运行,使其成为最快的之一运行这种大小的开关磁阻电机。最高的机器效率为93%(不包括涡轮增压器轴承损耗),在发电模式下测得的最大功率输出为5.3 kW,在电动模式下为4.3 kW。电动机/发电机转子的空气阻力损失已经通过计算流体动力学软件进行了计算,发现在140,000转/分钟时为63W。 ud通过一种新颖的实验技术,可以表征涡轮增压器的涡轮直至扩展比率为1.00。该实验表明,质量流量以大于1的膨胀比下降到零,而低于该临界压力比,涡轮机流量反向。涡轮在速度瞬变过程中的特征表明,性能图上的工作点偏离了准稳态线。这表明在涡轮和排气歧管流中会产生较小的不稳定影响。进一步的实验表明,电动机/发电机的扭矩振荡对涡轮机性能的影响可忽略不计。发动机仿真表明,该应用的理想电动辅助电动机功率在5至10 kW范围内。一台5 kW的机器可将发动机转速突然下降时发生的发动机转速下降降低多达83%(具体取决于初始负载和载荷步长),并将恢复原始速度的时间最多降低86% 。模拟还显示,电助力在改善发动机瞬态响应方面比涡轮可变几何系统更有效,但可变几何系统可用于优化在不同发动机负载条件下提高发动机特定燃料消耗的升压。

著录项

  • 作者

    Terdich Nicola;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号