首页> 外文OA文献 >Reduced-precision Algorithm-based Fault Tolerance for FPGA-implemented Accelerators
【2h】

Reduced-precision Algorithm-based Fault Tolerance for FPGA-implemented Accelerators

机译:FpGa实现的加速器的基于算法的降低精度的容错性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

© Springer International Publishing Switzerland 2016.As the threat of fault susceptibility caused by mechanisms including variation and degradation increases, engineers must give growing consideration to error detection and correction. While the use of common fault tolerance strategies frequently causes the incursion of significant overheads in area, performance and/or power consumption, options exist that buck these trends. In particular, algorithm-based fault tolerance embodies a proven family of low-overhead error mitigation techniques able to be built upon to create self-verifying circuitry. In this paper, we present our research into the application of algorithm-based fault tolerance (ABFT) in FPGA-implemented accelerators at reduced levels of precision. This allows for the introduction of a previously unexplored tradeoff: sacrificing the observability of faults associated with low-magnitude errors for gains in area, performance and efficiency by reducing the bit-widths of logic used for error detection. We describe the implementation of a novel checksum truncation technique, analysing its effects upon overheads and allowed error. Our findings include that bit-width reduction of ABFT circuitry within a fault-tolerant accelerator used for multiplying pairs of 32 × 32 matrices resulted in the reduction of incurred area overhead by 16.7% and recovery of 8.27% of timing model fmax. These came at the cost of introducing average and maximum absolute output errors of 0.430% and 0.927%, respectively, of the maximum absolute output value under transient fault injection.
机译:©瑞士施普林格国际出版公司2016.随着由变化和降级等机制引起的故障敏感性的威胁不断增加,工程师必须越来越多地考虑错误检测和纠正。尽管使用常见的容错策略经常会导致面积,性能和/或功耗方面的大量开销,但存在可以抵消这些趋势的选择。尤其是,基于算法的容错能力体现了经过验证的一系列低开销的错误缓解技术,这些技术可以基于这些技术来创建自验证电路。在本文中,我们以降低的精度水平介绍了基于算法的容错(ABFT)在FPGA实现的加速器中的应用研究。这允许引入以前无法探索的折衷方案:通过减少用于错误检测的逻辑的位宽,牺牲与低幅值错误相关的故障的可观察性,以获取面积,性能和效率。我们描述了一种新颖的校验和截断技术的实现,分析了其对开销和允许的错误的影响。我们的发现包括,在用于对32×32矩阵相乘的容错加速器中,ABFT电路的位宽减小导致所产生的区域开销减少了16.7%,并且恢复了时序模型fmax的8.27%。这些代价是以引入瞬时故障注入下最大绝对输出值的平均和最大绝对输出误差分别为0.430%和0.927%为代价的。

著录项

  • 作者

    Davis JJ; Cheung PYK;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号