机译:FT-CNN:卷积神经网络的基于算法的容错
Univ Calif Riverside Dept Comp Sci & Engn Riverside CA 92521 USA;
Argonne Natl Lab Math & Comp Sci Div Lemont IL 60439 USA;
Univ Calif Riverside Dept Comp Sci & Engn Riverside CA 92521 USA;
Oak Ridge Natl Lab Comp Sci & Math Div Oak Ridge TN 37831 USA;
Univ Calif Riverside Dept Comp Sci & Engn Riverside CA 92521 USA;
Oak Ridge Natl Lab Comp Sci & Math Div Oak Ridge TN 37831 USA;
Univ Calif Riverside Dept Comp Sci & Engn Riverside CA 92521 USA;
Argonne Natl Lab Math & Comp Sci Div Lemont IL 60439 USA;
Univ Calif Riverside Dept Comp Sci & Engn Riverside CA 92521 USA;
Convolution; Runtime; Kernel; Fault tolerant systems; Fault tolerance; Error correction codes; Mathematical model; Algorithm-based fault tolerance; deep learning; silent data corruption; reliability; high-performance computing;
机译:卷积神经网络硬件实现的容错方法研究
机译:FFT网络基于算法的容错能力
机译:基于卷积神经网络与模糊优化的多重故障诊断
机译:Covid-19使用微调卷积神经网络(FT-CNN)分类
机译:通过基于算法的容错和重新配置来提高系统可靠性。
机译:基于集成卷积神经网络和深度神经网络的特征融合方法进行轴承故障诊断
机译:基于算法的容错应用于P2P计算网络
机译:神经网络的容错性