首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network
【2h】

Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network

机译:基于集成卷积神经网络和深度神经网络的特征融合方法进行轴承故障诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rolling bearings are the core components of rotating machinery. Their health directly affects the performance, stability and life of rotating machinery. To prevent possible damage, it is necessary to detect the condition of rolling bearings for fault diagnosis. With the rapid development of intelligent fault diagnosis technology, various deep learning methods have been applied in fault diagnosis in recent years. Convolution neural networks (CNN) have shown high performance in feature extraction. However, the pooling operation of CNN can lead to the loss of much valuable information and the relationship between the whole and the part may be ignored. In this study, we proposed CNNEPDNN, a novel bearing fault diagnosis model based on ensemble deep neural network (DNN) and CNN. We firstly trained CNNEPDNN model. Each of its local networks was trained with different training datasets. The CNN used vibration sensor signals as the input, whereas the DNN used nine time-domain statistical features from bearing vibration sensor signals as the input. Each local network of CNNEPDNN extracted different features from its own trained dataset, thus we fused features with different discrimination for fault recognition. CNNEPDNN was tested under 10 fault conditions based on the bearing data from Bearing Data Center of Case Western Reserve University (CWRU). To evaluate the proposed model, four aspects were analyzed: convergence speed of training loss function, test accuracy, F-Score and the feature clustering result by t-distributed stochastic neighbor embedding (t-SNE) visualization. The training loss function of the proposed model converged more quickly than the local models under different loads. The test accuracy of the proposed model is better than that of CNN, DNN and BPNN. The F-Score value of the model is higher than that of CNN model, and the feature clustering effect of the proposed model was better than that of CNN.
机译:滚动轴承是旋转机械的核心部件。它们的健康状况直接影响旋转机械的性能,稳定性和寿命。为了防止可能的损坏,有必要检测滚动轴承的状态以进行故障诊断。随着智能故障诊断技术的飞速发展,近年来,各种深度学习方法已经在故障诊断中得到应用。卷积神经网络(CNN)在特征提取方面已显示出高性能。但是,CNN的合并操作可能会导致丢失大量有价值的信息,并且整体与部分之间的关​​系可能会被忽略。在这项研究中,我们提出了CNNEPDNN,这是一种基于集成深度神经网络(DNN)和CNN的新型轴承故障诊断模型。我们首先训练了CNNEPDNN模型。它的每个本地网络都使用不同的训练数据集进行了训练。 CNN使用振动传感器信号作为输入,而DNN使用来自轴承振动传感器信号的九个时域统计特征作为输入。 CNNEPDNN的每个本地网络均从其训练有素的数据集中提取了不同的特征,因此我们将具有不同判别力的特征融合在一起以进行故障识别。根据凯斯西储大学(CWRU)轴承数据中心的轴承数据,在10个故障条件下对CNNEPDNN进行了测试。为了评估所提出的模型,从四个方面进行了分析:训练损失函数的收敛速度,测试准确性,F-Score以及通过t分布随机邻居嵌入(t-SNE)可视化进行的特征聚类结果。在不同负载下,所提模型的训练损失函数的收敛速度要快于局部模型。该模型的测试精度优于CNN,DNN和BPNN。该模型的F-Score值高于CNN模型,并且该模型的特征聚类效果优于CNN。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号