首页> 外文OA文献 >A molecular-based group contribution equation of state for the description of fluid phase behaviour and thermodynamic derivative properties of mixtures (SAFT-γ Mie)
【2h】

A molecular-based group contribution equation of state for the description of fluid phase behaviour and thermodynamic derivative properties of mixtures (SAFT-γ Mie)

机译:基于分子的基团贡献状态方程,用于描述混合物的流体相行为和热力学导数特性(saFT-γmie)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An accurate knowledge of the thermophysical properties and phase behaviour ofudfluid mixtures is essential for the reliable design of products and processes across a wideudrange of chemical engineering applications, varying from the processing of petroleumudfluids to the manufacturing of pharmaceuticals. Thermodynamic tools and, in theudcontext of this work, group contribution (GC) methods are predictive approachesudthat are expected to play an important role in meeting these industrial needs. Theudprincipal focus of the work presented in this thesis is the development of a novel GCudmethod based on the statistical associating fluid theory (SAFT): the SAFT-γ Mieudapproach. The method is developed based on a detailed molecular model and a realisticudintermolecular potential, the Mie potential with variable attractive and repulsiveudranges, for the description of interactions at a molecular level. Over the past decade,udan increasing research effort has been devoted to developing formalisms that coupleudthe accuracy of the SAFT equation of state (EoS) with the predictive capabilities ofudgroup contribution approaches. In the development of such methods one aims to overcomeudthe limitations inherent to GC approaches based on activity coefficient models,udsuch as in the well-established universal quasi-chemical functional group activity coefficientud(UNIFAC) approach. A more recent landmark has been the development ofudheteronuclear methods within SAFT. The SAFT-γ EoS based on the square-well (SW)udpotential has been shown to describe accurately the phase behaviour of a wide varietyudof fluids. In the work presented in this thesis, SAFT-γ SW is applied to the study ofudthe fluid phase behaviour of aqueous solutions of hydrocarbons. These mixtures are ofudhigh industrial relevance, and the accurate representation of their highly non-ideal natureudis very challenging from a theoretical perspective. The SAFT-γ method is shownudto perform comparatively well in predicting the behaviour of the systems examined.udNonetheless, some challenges are identified, such as the description of thermodynamicudderivative properties and the description of near-critical fluid phase behaviour, whereudthe performance of the method is shown to be less accurate. These challenges partiallyudarise from the simplistic intermolecular square-well potential employed within SAFT-γudSW, which allows for a rigorous theoretical development, but fails to reproduce accuratelyudfiner aspects of the thermophysical behaviour of fluids, such as second-orderudderivative thermodynamic properties.udThese challenges are tackled here with the development of the SAFT-γ Mie GCudapproach, based on the versatile Mie intermolecular potential and a third-order treatmentudof the thermodynamics of the monomer segments. The SAFT-γ Mie methodudis applied to the study of the properties of two chemical families, n-alkanes and 2-udketones, and it is shown that a significant improvement over existing SAFT-basedudgroup contribution approaches can be achieved in the description of the pure componentudphase behaviour of the compounds studied. Moreover, the application of a realistic intermolecular potential is shown to allow for an excellent description ofudsecond-order derivative thermodynamic properties, and the accurate treatment of theudintersegment interactions is shown to improve the performance of the method in theuddescription of the near-critical fluid phase behaviour. The predictive capability of theudmethod is demonstrated in the description of mixture fluid phase behaviour and excessudthermodynamic properties in a predictive manner. Given the promising performanceudof the SAFT-γ Mie EoS, the method is applied to the case study of the solubilityudof two active pharmaceutical ingredients in organic solvents. The method is shownudto satisfactorily predict the solubilities of the mixtures considered, based on limitedudexperimental data for simple systems. Given the complexity of the mixtures studied,udthe performance of the SAFT-γ Mie is considered very encouraging and shows thatudthere is great potential in the application of the method to this challenging field.
机译:对 udfluid混合物的热物理性质和相行为的准确了解,对于从化工 udfluids到制药的各种化学工程应用,对于可靠的产品和工艺设计至关重要。热力学工具以及本文中的小组贡献(GC)方法是一种预测方法,有望在满足这些工业需求方面发挥重要作用。本文的主要工作重点是基于统计缔合流体理论(SAFT)的新型GC udmethod的开发:SAFT-γMie udapproach。该方法是基于详细的分子模型和现实的分子间电势(具有可变吸引和排斥超范围的米氏势)开发的,用于描述分子水平上的相互作用。在过去的十年中, udan越来越多的研究工作致力于发展形式主义,将SAFT状态方程(EoS)的准确性与 udgroup贡献方法的预测能力相结合。在这种方法的开发中,一个目标是克服基于活性系数模型的GC方法固有的局限性,例如在公认的通用准化学官能团活性系数 ud(UNIFAC)方法中。最近的一个里程碑是SAFT中 uderononuclear方法的发展。研究表明,基于方阱(SW) udpotential的SAFT-γEoS可以准确地描述多种 udof流体的相态。在本文的工作中,将SAFT-γSW用于研究碳氢化合物水溶液的液相行为。这些混合物在工业上具有很高的相关性,从高度的角度来看,准确地表示其高度非理想的特性非常具有挑战性。结果表明,SAFT-γ方法在预测所检查系统的行为方面表现相对较好。 ud尽管如此,仍存在一些挑战,例如热力学导数性质的描述以及近临界液相行为的描述,其中 ud表明该方法的性能较不准确。这些挑战部分来自SAFT-γ udSW中使用的简单分子间方阱势,这允许进行严格的理论开发,但未能准确地再现流体的热物理行为方面,例如二阶 ud这些在SAFT-γMie GC udapproach的开发中得到了解决,这些方法基于通用的Mie分子间电势和单体链段的热力学的三阶处理。 SAFT-γMie方法适用于研究两个化学家族的正构烷烃和2- udketones的性质,并且表明,与现有的基于SAFT的 udgroup贡献方法相比,可以显着改善对所研究化合物的纯组分同相行为的描述。此外,显示出现实的分子间电势的应用可以很好地描述 ud二阶导数热力学性质,并且显示 udins段之间的相互作用的精确处理可以改善该方法在 uddescription中的性能。近临界液相行为。该方法的预测能力在混合物流体相行为和过剩的热力学性质的描述中以预测的方式得到了证明。鉴于SAFT-γMie EoS具有令人满意的性能,该方法可用于两种活性药物成分在有机溶剂中的溶解度的案例研究。结果表明,根据简单系统的有限实验数据,该方法可以令人满意地预测所考虑混合物的溶解度。考虑到所研究混合物的复杂性,SAFT-γMie的性能被认为是非常令人鼓舞的,并且表明该方法在这一具有挑战性的领域中的应用潜力巨大。

著录项

  • 作者

    Papaioannou Vasileios;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号