首页> 外文OA文献 >Forecasting House Prices in Norway: A Univariate Time Series Approach
【2h】

Forecasting House Prices in Norway: A Univariate Time Series Approach

机译:预测挪威房价:单变量时间序列法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The main objective of this thesis is to forecast residential house prices in Norway from April 2013 to March 2014. Three univariate time series models are employed in an attempt to find an appropriate fit. The three are an AR-, an ARIMA- and an exponential smoothing state space (ETS) model. The forecast from the three models are also combined, in an effort to improve upon the accuracy of the single “best” forecast. This study implements a weighting scheme based on inverse out-of-sample mean square errors (MSEs). Weights of 0.29, 0.21 and 0.50 are assigned to the AR-, ARIMA- and ETS-models, respectively.The analysis identifies the forecast from the ETS-model as the most accurate among the individual models based on both out-of-sample root mean square error (RMSE) and mean absolute scaled error (MASE). The weighted forecast has a higher RMSE (less accurate), but a lower (more accurate) MASE compared to the ETS. Thus, we cannot reject the idea that a combination of forecast can in fact improve upon the accuracy of the single best forecast, since the two measures give conflicting results.
机译:本论文的主要目的是预测2013年4月至2014年3月挪威的住宅价格。采用三个单变量时间序列模型来寻求合适的方法。这三个模型分别是AR模型,ARIMA模型和指数平滑状态空间(ETS)模型。为了提高单个“最佳”预测的准确性,还对这三个模型的预测进行了合并。本研究基于样本外反方均方根误差(MSE)实现了加权方案。分别将AR,ARIMA和ETS模型的权重分配为0.29、0.21和0.50,分析基于两个样本外根将ETS模型的预测确定为单个模型中最准确的预测均方误差(RMSE)和平均绝对标度误差(MASE)。与ETS相比,加权预测的RMSE较高(准确性较低),但MASE较低(准确性较高)。因此,我们不能拒绝这样一种观点,即预测的组合实际上可以改善单个最佳预测的准确性,因为这两种方法给出了相互矛盾的结果。

著录项

  • 作者

    Skarbøvik Lars Fiva;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号