首页> 外文OA文献 >Low-temperature molecular beam epitaxy of GaAs: A theoretical investigation of antisite incorporation and reflection high-energy diffraction oscillations
【2h】

Low-temperature molecular beam epitaxy of GaAs: A theoretical investigation of antisite incorporation and reflection high-energy diffraction oscillations

机译:Gaas的低温分子束外延:反位掺入和反射高能衍射振荡的理论研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Surface dynamics dominate the incorporation of charged, As+Ga, and neutral, As0Ga, antisite arsenic, and the temporal variation of reflection high-energy electron diffraction(RHEED) intensity in the low-temperature molecular beam epitaxy of (100) gallium arsenide(GaAs). A rate equation model is proposed which includes the presence and dynamics of a physisorbed arsenic (PA) layer riding the growth surface. The PA layer dictates the incorporation and concentration of As+Ga and As0Ga. Additionally, it influences the RHEED oscillations (ROs) behavior and the RO’s dependence on its coverage through its contribution to the reflected intensity. The model results for the dependence of As+Ga and As0Ga concentrations on beam equivalent pressure (BEP) and growth temperature are in good agreement with experimental data. The experimental observations can be explained based on the saturation of the PA coverage at one monolayer and the competing rate processes such as the AsGa incorporation into and evaporation from the crystalline surface. Using the same kinetic model for the temporal behavior of the surface, the contribution of the PA layer to the RHEED intensity is computed based on kinematical theory of electron diffraction. The experimental observation of the ROs during growth at high and low temperatures with no ROs in the intermediate temperature range of 300–450 °C is in good agreement with our model results. At low temperatures, the surface is covered by the PA layer whose step density depends on that of the subsurface crystalline GaAs. Thus, a temporal variation of the step density of subsurface crystalline GaAs results in ROs, but with a different step height, that of the PA layer, of 2.48 Å. At high temperatures, the crystalline GaAs is exposed to the RHEED beam due to the evaporation of the PA layer and the ROs appear due to periodic step-density oscillations with a step height of 1.41 Å, which is the Ga–As crystalline interplanar distance. At intermediate temperatures, the surface is partially covered by the PA layer resulting in RHEED reflection contributions from both surfaces covered by the PA layer and crystal. Due to the very different interplanar distances between the crystalline GaAs and the PA layers, complete destructive interference of the RHEED intensity results at a 0.5 surface coverage of the PA layer. The RO dependence on the As BEP is also presented and discussed.
机译:在(100)砷化镓低温分子束外延中,带电的As + Ga和中性离子,As0Ga,反位砷的结合以及反射高能电子衍射(RHEED)强度的时间变化决定了表面动力学的变化。 GaAs)。提出了一个速率方程模型,该模型包括存在于生长表面上的物理吸附砷(PA)层的存在和动力学。 PA层决定了As + Ga和As0Ga的掺入和浓度。此外,它通过影响反射强度来影响RHEED振荡(RO)的行为以及RO对其覆盖范围的依赖性。 As + Ga和As0Ga浓度对电子束当量(BEP)和生长温度的依赖性的模型结果与实验数据吻合良好。可以基于一个单层PA覆盖的饱和度和竞争速率过程(例如,AsGa掺入晶体表面并从晶体表面蒸发)来解释实验观察结果。对于表面的时间行为,使用相同的动力学模型,可基于电子衍射的运动学理论计算出PA层对RHEED强度的贡献。在高温和低温下生长期间在300–450–C的中间温度范围内没有RO的ROs的实验观察与我们的模型结果非常吻合。在低温下,该表面被PA层覆盖,该PA层的阶跃密度取决于地下晶体GaAs的阶跃密度。因此,地下晶体GaAs的阶跃密度随时间变化会导致RO,但PA层的阶跃高度却不同,为2.48Å。在高温下,由于PA层的蒸发,结晶GaAs暴露于RHEED束中,而ROs则由于具有1.41Å台阶高度的周期性台阶密度振荡而出现,这是Ga–As结晶面间距。在中间温度下,该表面被PA层部分覆盖,导致PA层和晶体覆盖的两个表面均产生RHEED反射贡献。由于晶体GaAs和PA层之间的晶面间距非常不同,因此在PA层的表面覆盖率为0.5时,RHEED强度会完全破坏性地干涉。还介绍和讨论了RO对As BEP的依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号