首页> 外文OA文献 >From 3D Point Clouds to Pose-Normalised Depth Maps
【2h】

From 3D Point Clouds to Pose-Normalised Depth Maps

机译:从3D点云到姿态标准化深度图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the problem of generating either pairwise-aligned or pose-normalised depth maps from noisy 3D point clouds in a relatively unrestricted poses. Our system is deployed in a 3D face alignment application and consists of the following four stages: (i) data filtering, (ii) nose tip identification and sub-vertex localisation, (iii) computation of the (relative) face orientation, (iv) generation of either a pose aligned or a pose normalised depth map. We generate an implicit radial basis function (RBF) model of the facial surface and this is employed within all four stages of the process. For example, in stage (ii), construction of novel invariant features is based on sampling this RBF over a set of concentric spheres to give a spherically-sampled RBF (SSR) shape histogram. In stage (iii), a second novel descriptor, called an isoradius contour curvature signal, is defined, which allows rotational alignment to be determined using a simple process of 1D correlation. We test our system on both the University of York (UoY) 3D face dataset and the Face Recognition Grand Challenge (FRGC) 3D data. For the more challenging UoY data, our SSR descriptors significantly outperform three variants of spin images, successfully identifying nose vertices at a rate of 99.6%. Nose localisation performance on the higher quality FRGC data, which has only small pose variations, is 99.9%. Our best system successfully normalises the pose of 3D faces at rates of 99.1% (UoY data) and 99.6% (FRGC data).
机译:我们考虑从相对不受限制的姿势中从嘈杂的3D点云生成成对对齐或姿势归一化的深度图的问题。我们的系统部署在3D人脸对齐应用程序中,包括以下四个阶段:(i)数据过滤,(ii)鼻尖识别和子顶点定位,(iii)计算(相对)人脸朝向,(iv )生成姿势对齐或姿势归一化深度图。我们生成了面部表面的隐式径向基函数(RBF)模型,并将其用于该过程的所有四个阶段。例如,在阶段(ii)中,新颖不变性的构造是基于在一组同心球上对该RBF进行采样,以提供一个球形采样的RBF(SSR)形状直方图。在阶段(iii)中,定义了第二个新颖的描述符,称为等半径轮廓曲率信号,该描述符允许使用一维相关性的简单过程确定旋转对齐。我们在约克大学(UoY)3D人脸数据集和人脸识别大挑战(FRGC)3D数据上测试我们的系统。对于更具挑战性的UoY数据,我们的SSR描述符明显优于自旋图像的三个变体,以99.6%的比率成功识别了鼻子顶点。仅姿态变化很小的高质量FRGC数据的鼻子定位性能为99.9%。我们最好的系统以99.1%(UoY数据)和99.6%(FRGC数据)的比率成功地对3D人脸的姿势进行了标准化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号