首页> 外文OA文献 >Uncertainty propagation from the cell transmission traffic flow model to emission predictions: a data-driven approach
【2h】

Uncertainty propagation from the cell transmission traffic flow model to emission predictions: a data-driven approach

机译:从小区传输交通流模型到排放预测的不确定性传播:数据驱动方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Road traffic exhaust emission predictions are used to inform transport policy and investment decisions aimed at reducing emissions and achieving sustainable mobility. Emission predictions are also used as inputs when modeling air quality and human exposure to traffic-related air pollutants. To be effective, such policies and/or integration must be based on robust models that not only provide point-based predictions but also inform these with an interval of confidence that properly accounts for the propagation of uncertainties through the complex chain of models involved. This paper develops a data-driven methodological framework that enables calculating the uncertainty in average speed–based emission predictions induced by uncertainty in its traffic data inputs, which are most often predictions (or outputs) of traffic flow models. An ensemble-based optimisation approach is used to estimate both calibration and validation errors arising from uncertainty in the structure and parameterisation of the cell transmission model, a discretised first-order macroscopic traffic flow model that is often integrated with average speed–based emission models. A Monte Carlo sampling approach is proposed to propagate the uncertainty in traffic flow inputs to emission predictions. To ensure transferability of findings, this methodology has been tested using multiple real data sets on three motorway road networks, one of which operates under variable speed limits.
机译:道路交通废气排放预测可用于指导旨在减少排放和实现可持续交通的运输政策和投资决策。在对空气质量和人类与交通相关的空气污染物的暴露进行建模时,排放预测也可用作输入。为有效起见,此类策略和/或集成必须基于健壮的模型,该模型不仅提供基于点的预测,而且还以一定的置信度来告知这些预测,以适当地考虑到所涉及的复杂模型链中不确定性的传播。本文开发了一个数据驱动的方法框架,该框架能够计算由交通数据输入中的不确定性引起的基于平均速度的排放预测中的不确定性,该不确定性通常是交通流模型的预测(或输出)。基于整体的优化方法可用于估算由于细胞传输模型(通常与基于平均速度的排放模型集成的离散一阶宏观交通流模型)的结构和参数化的不确定性而引起的校准和验证误差。提出了蒙特卡洛采样方法,以将交通流输入中的不确定性传播到排放预测中。为确保结果的可传递性,已在三个高速公路道路网络上使用多个真实数据集对该方法进行了测试,其中一个在可变速度限制下运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号