首页> 外文OA文献 >Constructive zermelo-fraenkel set theory, power set, and the calculus of constructions
【2h】

Constructive zermelo-fraenkel set theory, power set, and the calculus of constructions

机译:建设性的zermelo-fraenkel集合论,幂集和构造的微积分

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Full intuitionistic Zermelo-Fraenkel set theory, IZF, is obtained from constructive Zermelo-Fraenkel set theory, CZF, by adding the full separation axiom scheme and the power set axiom. The strength of CZF plus full separation is the same as that of second order arithmetic, using a straightforward realizability interpretation in classical second order arithmetic and the fact that second order Heyting arithmetic is already embedded in CZF plus full separation. This paper is concerned with the strength of CZF augmented by the power set axiom, CZFP. It will be shown that it is of the same strength as Power Kripke-Platek set theory, KP(P), as well as a certain system of type theory, MLVP, which is a calculus of constructions with one universe. The reduction of CZFP to KP(P) uses a realizability interpretation wherein a realizer for an existential statement provides a set of witnesses for the existential quantifier rather than a single witness. The reduction of KP(P) to CZFP employs techniques from ordinal analysis which, when combined with a special double negation interpretation that respects extensionality, also show that KP(P) can be reduced to CZF with the negative power set axiom. As CZF augmented by the latter axiom can be interpreted in MLVP and this type theory has a types-as-classes interpretation in CZFP, the circle will be completed.
机译:完全直觉的Zermelo-Fraenkel集理论IZF是从构造性Zermelo-Fraenkel集理论CZF中获得的,方法是添加完全分离公理方案和幂集公理。 CZF加全分隔的强度与二阶算术的强度相同,它使用经典二阶算术中的直接可实现性解释,并且CZF加全分隔中已经嵌入了二阶Heyting算术。本文关注的是通过功率集公理CZFP增强的CZF的强度。它将显示出它与Power Kripke-Platek集理论KP(P)以及某种类型论系统MLVP具有相同的强度,后者是一个具有一个宇宙的构造的演算。将CZFP简化为KP(P)使用可实现性解释,其中,存在性声明的实现者为存在性量词提供一组见证人,而不是单个见证人。将KP(P)还原为CZFP时使用的是有序分析技术,该技术与尊重延展性的特殊双重否定解释结合使用时,还表明KP(P)可以使用负幂集公理还原为CZF。由于可以在MLVP中解释由后一个公理增强的CZF,并且此类型理论在CZFP中具有“按类分类”的解释,因此圆将完成。

著录项

  • 作者

    Rathjen M;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号