首页> 外文OA文献 >Accurate Segmentation of Vertebral Bodies and Processes Using Statistical Shape Decomposition and Conditional Models
【2h】

Accurate Segmentation of Vertebral Bodies and Processes Using Statistical Shape Decomposition and Conditional Models

机译:使用统计形状分解和条件模型精确分割椎体和过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Detailed segmentation of the vertebrae is an important pre-requisite in various applications of image-based spine assessment, surgery and biomechanical modeling. In particular, accurate segmentation of the processes is required for image-guided interventions, for example for optimal placement of bone grafts between the transverse processes. Furthermore, the geometry of the processes is now required in musculoskeletal models due to their interaction with the muscles and ligaments. In this paper, we present a new method for detailed segmentation of both the vertebral bodies and processes based on statistical shape decomposition and conditional models. The proposed technique is specifically developed with the aim to handle the complex geometry of the processes and the large variability between individuals. The key technical novelty in this work is the introduction of a part-based statistical decomposition of the vertebrae, such that the complexity of the subparts is effectively reduced, and model specificity is increased. Subsequently, in order to maintain the statistical and anatomic coherence of the ensemble, conditional models are used to model the statistical inter-relationships between the different subparts. For shape reconstruction and segmentation, a robust model fitting procedure is used to exclude improbable inter-part relationships in the estimation of the shape parameters. Segmentation results based on a dataset of 30 healthy CT scans and a dataset of 10 pathological scans show a point-to-surface error improvement of 20% and 17% respectively, and the potential of the proposed technique for detailed vertebral modeling.
机译:在基于图像的脊柱评估,手术和生物力学建模的各种应用中,椎骨的详细分割是重要的先决条件。特别地,对于图像引导的干预,例如为了在横向过程之间最佳地放置骨移植物,需要对过程进行精确的分割。此外,由于它们与肌肉和韧带的相互作用,现在在肌肉骨骼模型中需要过程的几何形状。在本文中,我们提出了一种基于统计形状分解和条件模型对椎骨和椎体进行详细细分的新方法。提出的技术是专门为处理过程的复杂几何形状和个体之间的较大差异而开发的。这项工作中的关键技术新颖性是引入了基于部分的椎骨统计分解,从而有效地降低了子部分的复杂性,并提高了模型的特异性。随后,为了保持整体的统计和解剖一致性,使用条件模型对不同子部分之间的统计相互关系建模。对于形状重构和分割,使用鲁棒的模型拟合过程来排除形状参数估计中不可能的零件间关系。基于30个健康CT扫描的数据集和10个病理扫描的数据集的分割结果分别显示出点对面误差的改善分别为20%和17%,并且该技术可用于详细的椎骨建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号