首页> 外文OA文献 >On the use of a Modified Latin Hypercube Sampling (MLHS) approach in the estimation of a Mixed Logit model for vehicle choice
【2h】

On the use of a Modified Latin Hypercube Sampling (MLHS) approach in the estimation of a Mixed Logit model for vehicle choice

机译:关于使用改进的拉丁超立方采样(mLHs)方法估计混合Logit模型的车辆选择

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quasi-random number sequences have been used extensively for many years in the simulation of integrals that do not have a closed-form expression, such as Mixed Logit and Multinomial Probit choice probabilities. Halton sequences are one example of such quasi-random number sequences, and various types of Halton sequences, including standard, scrambled, and shuffled versions, have been proposed and tested in the context of travel demand modeling. In this paper, we propose an alternative to Halton sequences, based on an adapted version of Latin Hypercube Sampling. These alternative sequences, like scrambled and shuffled Halton sequences, avoid the undesirable correlation patterns that arise in standard Halton sequences. However, they are easier to create than scrambled or shuffled Halton sequences. They also provide more uniform coverage in each dimension than any of the Halton sequences. A detailed analysis, using a 16-dimensional Mixed Logit model for choice between alternative-fuelled vehicles in California, was conducted to compare the performance of the different types of draws. The analysis shows that, in this application, the Modified Latin Hypercube Sampling (MLHS) outperforms each type of Halton sequence. This greater accuracy combined with the greater simplicity make the MLHS method an appealing approach for simulation of travel demand models and simulation-based models in general.
机译:拟随机数序列已在模拟不具有封闭形式的积分(例如混合Logit和多项式概率选择概率)中广泛使用了很多年。霍尔顿序列是此类准随机数序列的一个示例,并且已在旅行需求建模的背景下提出并测试了各种类型的霍尔顿序列,包括标准,加扰和混洗版本。在本文中,我们根据拉丁文Hypercube Sampling的改编版本,提出了Halton序列的替代方案。这些替代序列,如加扰和混洗的Halton序列,避免了标准Halton序列中出现的不良关联模式。但是,它们比加扰或混洗的Halton序列更容易创建。它们在每个维度上的覆盖范围也比任何Halton序列都更为均匀。进行了详细的分析,使用16维混合Logit模型在加利福尼亚的替代燃料汽车之间进行选择,以比较不同类型抽奖的表现。分析表明,在此应用程序中,改进的拉丁超立方采样(MLHS)优于每种类型的Halton序列。更高的准确性和更大的简便性使MLHS方法成为了模拟旅行需求模型和一般基于仿真的模型的一种有吸引力的方法。

著录项

  • 作者

    Hess S.; Train K.E.; Polak J.W.;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号