首页> 外文OA文献 >Local Heaviside weighted MLPG meshless method approach for extended Flamant problem using radial basis functions
【2h】

Local Heaviside weighted MLPG meshless method approach for extended Flamant problem using radial basis functions

机译:局部Heaviside加权mLpG网格方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Meshless Local Petrov-Galerkin (MLPG) method with Heaviside step function as the weighting function is applied to solve the extended Flamant problem. There are two different classes of trial functions considered in the paper: classical radial basis functions (RBF) as extended multiqudrics and compactly supported radial basis functions (CSRBF) as Wu and Wendland functions. The presented method is a truly meshless method based only on a set of nodes. This approach allows for direct imposing of essential boundary conditions, moreover - no domain integration is needed and no stiffness matrix assembly is required. The solution of extended Flamant problem is presented. The performance of proposed RBFs and CSRBFs is compared and the effect of the sizes of local subdomain and interpolation domain is studied. Results show the accuracy and numerical performance of the method.
机译:应用以Heaviside阶跃函数为加权函数的无网格局部Petrov-Galerkin(MLPG)方法来解决扩展的Flamant问题。本文考虑了两类不同的试验函数:经典的径向基函数(RBF)作为扩展的多二元函数和紧凑支持的径向基函数(CSRBF)作为Wu和Wendland函数。提出的方法是仅基于一组节点的真正无网格方法。此方法允许直接施加基本边界条件,而且-不需要域积分,也不需要刚度矩阵组装。提出了扩展的Flamant问题的解决方案。比较了所提出的RBF和CSRBF的性能,研究了局部子域和插值域大小的影响。结果表明了该方法的准确性和数值性能。

著录项

  • 作者

    OSSOWSKI Rafal;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号