首页> 外文期刊>Engineering analysis with boundary elements >Meshless solutions of 2D contact problems by subdomain variational inequality and MLPG method with radial basis functions
【24h】

Meshless solutions of 2D contact problems by subdomain variational inequality and MLPG method with radial basis functions

机译:子域变分不等式和带径向基函数的MLPG方法求解二维接触问题的无网格解

获取原文
获取原文并翻译 | 示例

摘要

A subdomain variational inequality and its meshless linear complementary formulation are developed in the present paper for solving two-dimensional contact problems. The subdomain variational inequality will be defined in detail. The meshless method is based on a local weighted residual method with the Heaviside step function as the weighting function over a local subdomain and radial basis functions as trial functions for interpolation. Three different radial basis functions (RBFs), i.e. Multiquadrics (MQ), Gaussian (EXP) and Thin Plate Splines (TPS) are examined and the selection of their shape parameters is studied based on 2D solid stress problems with closed-form solutions. The developed meshless/linear complementary method is applied to solve two frictionless contact problems. For the RBFs, it has been found that the TIPS shape parameter is not sensitive to nodal distance and a value of 4 is found as a good choice for TPS from this research. (c) 2005 Elsevier Ltd. All rights reserved.
机译:为解决二维接触问题,本文提出了一个子域变分不等式及其无网格线性互补公式。将详细定义子域变分不等式。无网格方法基于局部加权残差方法,其中Heaviside阶跃函数作为局部子域的加权函数,而径向基函数作为插值的试验函数。研究了三种不同的径向基函数(RBF),即多二次方(MQ),高斯(EXP)和薄板样条线(TPS),并基于带有封闭形式解的二维固体应力问题研究了形状参数的选择。所开发的无网格/线性互补方法用于解决两个无摩擦接触问题。对于RBF,已经发现TIPS形状参数对节点距离不敏感,因此从该研究中找到值为4的TPS是一个很好的选择。 (c)2005 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号