首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Local Heaviside weighted MLPG meshless method for two-dimensional solids using compactly supported radial basis functions
【24h】

Local Heaviside weighted MLPG meshless method for two-dimensional solids using compactly supported radial basis functions

机译:使用紧密支持的径向基函数的二维固体局部重组分加权MLPG无网格方法

获取原文
获取原文并翻译 | 示例

摘要

Compactly supported radial basis functions (CSRBF) are employed for constructing trial functions in the local Heaviside weighted meshless local Petrov-Galerkin method for stress analysis of two-dimensional solids, where the Heaviside step function is used as the weighting function over a local sub-domain. The present method is a truly meshless method based only on a number of randomly located nodes. No domain integration is needed, no element matrix assembly is required and no special treatment is needed to impose the essential boundary conditions. Effects of the sizes of local sub-domain and interpolation domain on the performance of the present method are investigated. In this paper, the size of the support of the basis function has been treated as a shape parameter, and then, the behaviour of this shape parameter has been systematically studied for six different CSRBFs. Example problems in elastostatics are presented and compared with closed-form solutions. Results show that the proposed method is highly accurate and possesses no numerical difficulties.
机译:紧凑支持的径向基函数(CSRBF)用于在局部Heaviside加权无网格局部Petrov-Galerkin方法中构造试验函数,用于二维固体应力分析,其中Heaviside阶跃函数用作局部子区域上的加权函数域。本方法是仅基于多个随机定位的节点的真正无网格方法。不需要域集成,不需要元素矩阵组装,也不需要特殊处理即可施加基本边界条件。研究了局部子域和插值域的大小对本方法性能的影响。在本文中,将基础函数的支持大小视为形状参数,然后针对六个不同的CSRBF对该系统形状参数的行为进行了系统研究。给出了静电静力学中的示例问题,并将其与闭式解决方案进行了比较。结果表明,该方法准确度高,没有数值上的困难。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号