首页> 外文OA文献 >A production-inventory model with permissible delay incorporating learning effect in random planning horizon using genetic algorithm
【2h】

A production-inventory model with permissible delay incorporating learning effect in random planning horizon using genetic algorithm

机译:具有允许延迟的生产 - 库存模型,其使用遗传算法在随机计划范围内结合学习效果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a production-inventory model for deteriorating items with stock-dependent demand under inflation in a random planning horizon. The supplier offers the retailer fully permissible delay in payment. It is assumed that the time horizon of the business period is random in nature and follows exponential distribution with a known mean. Here learning effect is also introduced for the production cost and setup cost. The model is formulated as profit maximization problem with respect to the retailer and solved with the help of genetic algorithm (GA) and PSO. Moreover, the convergence of two methods-GA and PSO-is studied against generation numbers and it is seen that GA converges rapidly than PSO. The optimum results from methods are compared both numerically and graphically. It is observed that the performance of GA is marginally better than PSO. We have provided some numerical examples and some sensitivity analyses to illustrate the model.
机译:本文提出了一种生产库存模型,该模型用于在随机计划范围内,随着通货膨胀而使具有库存依赖需求的物品变质。供应商向零售商提供完全允许的付款延迟。假定业务周期的时间范围本质上是随机的,并且遵循具有已知均值的指数分布。这里还针对生产成本和设置成本引入了学习效果。该模型被公式化为相对于零售商的利润最大化问题,并借助遗传算法(GA)和PSO进行了求解。此外,针对代数研究了GA和PSO两种方法的收敛性,可以看出GA的收敛速度比PSO快。方法的最佳结果在数值和图形上都进行了比较。可以看出,GA的性能略优于PSO。我们提供了一些数值示例和一些敏感性分析来说明该模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号