首页> 外文期刊>Computers & Industrial Engineering >A production inventory model with stock dependent demand incorporating learning and inflationary effect in a random planning horizon: A fuzzy genetic algorithm with varying population size approach
【24h】

A production inventory model with stock dependent demand incorporating learning and inflationary effect in a random planning horizon: A fuzzy genetic algorithm with varying population size approach

机译:具有库存依赖需求的生产库存模型在随机计划范围内结合了学习和通货膨胀效应:一种具有可变种群规模方法的模糊遗传算法

获取原文
获取原文并翻译 | 示例

摘要

A production inventory model for a newly launched product is developed incorporating inflation and time value of money. It is assumed that demand of the item is displayed stock dependent and lifetime of the product is random in nature and follows exponential distribution with a known mean. Here learning effect on production and setup cost is incorporated. Model is formulated to maximize the expected profit from the whole planning horizon. Following [Last, M. & Eyal, S. (2005). A fuzzy-based lifetime extension of genetic algorithms. Fuzzy Sets andSystems, 149, 131-147], a genetic algorithm (GA) with varying population size is used to solve the model where crossover probability is a function of parent's age-type (young, middle-aged, old, etc.) and is obtained using a fuzzy rule base and possibility theory. In this GA a subset of better children is included with the parent population for next generation and size of this subset is a percentage of the size olits parent set. This GA is named fuzzy genetic algorithm (FGA) and is used to make decision for above production inventory model in different cases. The model is illustrated with some numerical data. Sensitivity analysis on expected profit function is also presented. Performance of this GA with respect to some other GAs are compared.
机译:结合通货膨胀和货币时间价值,开发了新产品的生产库存模型。假定该项目的需求取决于库存,并且该产品的寿命本质上是随机的,并且具有已知均值的指数分布。这里结合了学习对生产和安装成本的影响。制定模型以最大化整个计划范围内的预期利润。继[Last,M.&Eyal,S.(2005)。遗传算法的基于模糊的生命周期扩展。 [Fuzzy Sets and Systems,149,131-147],一种具有可变人口规模的遗传算法(GA)用于求解交叉概率是父母年龄类型(年轻人,中年人,年龄等)的函数的模型。并使用模糊规则库和可能性理论获得。在此GA中,下一代的父母群体中包括子代更好的孩子,并且该子集的大小是父集合大小的百分比。该遗传算法称为模糊遗传算法(FGA),用于在不同情况下为上述生产库存模型做出决策。该模型用一些数值数据说明。还对预期利润函数进行了敏感性分析。比较了该GA与其他某些GA的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号