首页> 外文OA文献 >Optimal two-sided tests for instrumental variables regression with heteroskedastic and autocorrelated errors
【2h】

Optimal two-sided tests for instrumental variables regression with heteroskedastic and autocorrelated errors

机译:具有异方差和自相关误差的仪器变量回归的最佳双侧检验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper considers two-sided tests for the parameter of an endogenous variable in an instrumental variable (IV) model with heteroskedastic and autocorrelated errors. We develop the finite-sample theory of weighted-average power (WAP) tests with normal errors and a known long-run variance. We introduce two weights which are invariant to orthogonal transformations of the instruments; e.g., changing the order in which the instruments appear. While tests using the MM1 weight can be severely biased, optimal tests based on the MM2 weight are naturally two-sided when errors are homoskedastic. We propose two boundary conditions that yield two-sided tests whether errors are homoskedastic or not. The locally unbiased (LU) condition is related to the power around the null hypothesis and is a weaker requirement than unbiasedness. The strongly unbiased (SU) condition is more restrictive than LU, but the associatedWAP tests are easier to implement. Several tests are SU in finite samples or asymptotically, including tests robust to weak IV (such as the Anderson-Rubin, score, conditional quasi-likelihood ratio, and I. Andrews' (2015) PI-CLC tests) and two-sided tests which are optimal when the sample size is large and instruments are strong. We refer to the WAP-SU tests based on our weights as MM1-SU and MM2-SU tests. Dropping the restrictive assumptions of normality and known variance, the theory is shown to remain valid at the cost of asymptotic approximations. The MM2-SU test is optimal under the strong IV asymptotics, and outperforms other existing tests under the weak IV asymptotics.
机译:本文考虑对工具变量(IV)模型中具有异方差和自相关误差的内生变量的参数进行双向测试。我们开发了具有平均误差和已知长期差异的加权平均功率(WAP)测试的有限样本理论。我们介绍了两个不变的权重,它们不变于工具的正交变换。例如,更改乐器的显示顺序。尽管使用MM1权重的测试可能会严重偏差,但是当误差为纯方差时,基于MM2权重的最佳测试自然是双向的。我们提出了两个边界条件,这些条件可进行误差是否为纯方差的双向检验。局部无偏(LU)条件与原假设周围的功效相关,并且比无偏弱。高度无偏(SU)条件比LU更具限制性,但是相关的WAP测试更易于实现。有几种测试是在有限样本中或渐近地进行的SU,包括对弱IV鲁棒的测试(例如Anderson-Rubin,得分,条件准似然比和I.Andrews(2015)PI-CLC测试)和双面测试当样本量较大且仪器坚固时,这是最佳选择。我们将基于权重的WAP-SU测试称为MM1-SU和MM2-SU测试。除去正态性和已知方差的限制性假设,该理论仍然有效,但以渐近近似为代价。 MM2-SU测试在强IV渐近情况下是最佳的,并且在弱IV渐近情况下优于其他现有测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号