首页> 外文OA文献 >Cake cutting: Fair and square
【2h】

Cake cutting: Fair and square

机译:蛋糕切割:公平和正方形

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The classic fair cake-cutting problem [Steinhaus, 1948] is extended by introducing geometric constraints on the allocated pieces. Specifically, agents may demand to get their share as a square or a rectangle with a bounded length/width ratio. This is a plausible constraint in realistic cake-cutting applications, notably in urban and agricultural economics where the cake is land. Geometric constraints greatly affect the classic results of the fair division theory. The existence of a proportional division, giving each agent 1/n of his total cake value, is no longer guaranteed. We prove that it is impossible to guarantee each agent more than 1/(2n-1) of his total value. Moreover, we provide procedures implementing partially proportional division, giving each agent 1/(An-B) of his total value, where A and B are constants depending on the shape of the cake and its pieces. Fairness and social welfare implications of these procedures are analyzed in various scenarios.
机译:经典的切蛋糕问题[Steinhaus,1948]通过在分配的零件上引入几何约束来扩展。具体来说,代理商可能会要求以一定的长度/宽度比的正方形或矩形获得其份额。这在切蛋糕的实际应用中是一个合理的约束,特别是在蛋糕是土地的城市和农业经济学中。几何约束极大地影响了公平分配理论的经典结果。不再保证按比例分配给每个代理人总蛋糕价值的1 / n。我们证明不可能保证每个代理人的总价值不超过其总价值的1 /(2n-1)。此外,我们提供了执行部分比例除法的程序,为每个代理分配了代理总值的1 /(An-B),其中A和B是常数,取决于蛋糕及其碎片的形状。在各种情况下分析了这些程序的公平性和社会福利意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号