首页> 外文OA文献 >Task-driven adaptive statistical compressive sensing of gaussian mixture models
【2h】

Task-driven adaptive statistical compressive sensing of gaussian mixture models

机译:任务驱动的高斯混合模型自适应统计压缩感知

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A framework for adaptive and non-adaptive statistical compressive sensing is developed, where a statistical model replaces the standard sparsity model of classical compressive sensing. We propose within this framework optimal task-specific sensing protocols specifically and jointly designed for classification and reconstruction. A two-step adaptive sensing paradigm is developed, where online sensing is applied to detect the signal class in the first step, followed by a reconstruction step adapted to the detected class and the observed samples. The approach is based on information theory, here tailored for Gaussian mixture models (GMMs), where an information-theoretic objective relationship between the sensed signals and a representation of the specific task of interest is maximized. Experimental results using synthetic signals, Landsat satellite attributes, and natural images of different sizes and with different noise levels show the improvements achieved using the proposed framework when compared to more standard sensing protocols. The underlying formulation can be applied beyond GMMs, at the price of higher mathematical and computational complexity. © 1991-2012 IEEE.
机译:开发了自适应和非自适应统计压缩感测的框架,其中统计模型代替了经典压缩感测的标准稀疏模型。我们在此框架内提出了针对特定任务和联合设计用于分类和重建的最佳任务特定传感协议。开发了两步自适应传感范式,其中在第一步中应用在线传感来检测信号类别,然后是适合于检测到的类别和观察到的样本的重构步骤。该方法基于信息理论,此处针对高斯混合模型(GMM)进行了量身定制,在该模型中,感测信号与感兴趣的特定任务的表示之间的信息理论客观关系得到了最大化。使用合成信号,Landsat卫星属性以及不同大小和不同噪声水平的自然图像的实验结果表明,与更标准的传感协议相比,使用建议的框架可以实现改进。可以以更高的数学和计算复杂性为代价,在GMM之外应用基础公式。 ©1991-2012 IEEE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号