首页> 外文期刊>Signal Processing, IEEE Transactions on >Statistical Compressed Sensing of Gaussian Mixture Models
【24h】

Statistical Compressed Sensing of Gaussian Mixture Models

机译:高斯混合模型的统计压缩感知

获取原文
获取原文并翻译 | 示例

摘要

A novel framework of compressed sensing, namely statistical compressed sensing (SCS), that aims at efficiently sampling a collection of signals that follow a statistical distribution, and achieving accurate reconstruction on average, is introduced. SCS based on Gaussian models is investigated in depth. For signals that follow a single Gaussian model, with Gaussian or Bernoulli sensing matrices of ${cal O}(k)$ measurements, considerably smaller than the ${cal O}(k log(N/k))$ required by conventional CS based on sparse models, where $N$ is the signal dimension, and with an optimal decoder implemented via linear filtering, significantly faster than the pursuit decoders applied in conventional CS, the error of SCS is shown tightly upper bounded by a constant times the best $k$-term approximation error, with overwhelming probability. The failure probability is also significantly smaller than that of conventional sparsity-oriented CS. Stronger yet simpler results further show that for any sensing matrix, the error of Gaussian SCS is upper bounded by a constant times the best $k$-term approximation with probability one, and the bound constant can be efficiently calculated. For Gaussian mixture models (GMMs), that assume multiple Gaussian distributions and that each signal follows one of them with an unknown index, a piecewise linear estimator is introduced to decode SCS. The accuracy of model selection, at the heart of the piecewise linear decoder, is analyzed in terms of the properties of the Gaussian distributions and the number of sensing measurements. A maximization-maximization (Max-Max) algorithm that iteratively estimates the Gaussian mo-n-ndels parameters, the signals model selection, and decodes the signals, is presented for GMM-based SCS. In real image sensing applications, GMM-based SCS is shown to lead to improved results compared to conventional CS, at a considerably lower computational cost.
机译:介绍了一种新颖的压缩感知框架,即统计压缩感知(SCS),该框架旨在有效地采样遵循统计分布的信号集合,并实现平均的准确重建。深入研究了基于高斯模型的SCS。对于遵循单个高斯模型的信号,其中高斯或伯努利感测到 $ {cal O}(k)$ 测量矩阵,大大小于常规CS基于以下要求的 $ {cal O}(k log(N / k))$ 稀疏模型,其中 $ N $ 是信号维度,并且通过线性滤波实现的最佳解码器比在常规CS中使用追逐解码器时,SCS的误差紧紧地以一个恒定值的上限显示,该常数乘以最佳 $ k $ -项逼近误差,具有压倒性的可能性。失败概率也大大小于传统的稀疏定向CS。更强大但更简单的结果进一步表明,对于任何感测矩阵,高斯SCS的误差上限都是一个常数乘以最佳 $ k $ <概率为1的/公式近似,可以有效地计算边界常数。对于高斯混合模型(GMM),假设存在多个高斯分布,并且每个信号以未知索引跟随其中的一个,则引入分段线性估计器对SCS进行解码。模型分析的准确性是分段线性解码器的核心,它根据高斯分布的性质和感应测量的次数进行分析。针对基于GMM的SCS,提出了一种迭代最大化估计高斯Mo-n-ndels参数,选择信号模型并解码信号的最大化-最大化(Max-Max)算法。在实际的图像传感应用中,与传统的CS相比,基于GMM的SCS被证明可以带来更好的结果,而计算成本却大大降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号