首页> 外文OA文献 >Predicting the structure of covert networks using geneticprogramming, cognitive work analysis and social network analysis
【2h】

Predicting the structure of covert networks using geneticprogramming, cognitive work analysis and social network analysis

机译:用遗传算法预测隐蔽网络的结构编程,认知工作分析和社交网络分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A significant challenge in intelligence analysis involves knowing when a social network description is ‘complete’, i.e., when sufficient connections have been found to render the network complete. In this paper, a combination of methods is used to predict covert network structures for specific missions. The intention is to support hypothesis-generation in the Social Network Analysis of covert organisations. The project employs a four phase approach to modelling social networks, working from task descriptions rather than from contacts between individual: phase one involves the collation of intelligence covering types of mission, in terms of actors and goals; phase two involves the building of task models, based on Cognitive Work Analysis, to provide both a process model of the operation and an indication of the constraints under which the operation will be performed; phase three involves the generation of alternative networks using Genetic Programming; phase four involves the analysis of the resulting networks using social network analysis. Subsequent analysis explores the resilience of the networks, in terms of their resistance to losses of agents or tasks. The project demonstrates that it is possible to define a set of structures that can be tackled using different intervention strategies, demonstrates how patterns of social network structures can be predicted on the basis of task knowledge, and how these structures can be used to guide the gathering of intelligence and to define plausible Covert Networks
机译:情报分析中的一项重大挑战涉及知道社交网络描述何时“完整”,即何时找到足够的连接以使网络完整。在本文中,将多种方法组合用于预测特定任务的隐蔽网络结构。目的是支持秘密组织的社会网络分析中的假设生成。该项目采用四个阶段的方法对社交网络进行建模,即从任务描述而不是从个人之间的联系进行工作:第一阶段涉及从角色和目标方面对涵盖任务类型的情报进行整理。第二阶段涉及基于认知工作分析的任务模型的构建,以提供操作的过程模型和操作执行的约束条件的指示。第三阶段涉及使用遗传编程生成替代网络;第四阶段涉及使用社交网络分析对生成的网络进行分析。随后的分析从抗拒代理或任务损失的角度探讨了网络的弹性。该项目表明,可以定义一组可以使用不同干预策略解决的结构,并演示如何可以根据任务知识预测社交网络结构的模式,以及如何使用这些结构来指导聚会并定义合理的隐蔽网络

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号