首页> 外文OA文献 >Unsupervised Texture Segmentation using Active Contours and Local Distributions of Gaussian Markov Random Field Parameters
【2h】

Unsupervised Texture Segmentation using Active Contours and Local Distributions of Gaussian Markov Random Field Parameters

机译:基于活动轮廓和高斯马尔可夫随机场参数局部分布的无监督纹理分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, local distributions of low order Gaussian Markov Random Field (GMRF) model parameters are proposed as texture features for unsupervised texture segmentation.Instead of using model parameters as texture features, we exploit the variations in parameter estimates found by model fitting in local region around the given pixel. Thespatially localized estimation process is carried out by maximum likelihood method employing a moderately small estimation window which leads to modeling of partial texturecharacteristics belonging to the local region. Hence significant fluctuations occur in the estimates which can be related to texture pattern complexity. The variations occurred in estimates are quantified by normalized local histograms. Selection of an accurate window size for histogram calculation is crucial and is achieved by a technique based on the entropy of textures. These texture features expand the possibility of using relativelylow order GMRF model parameters for segmenting fine to very large texture patterns and offer lower computational cost. Small estimation windows result in better boundarylocalization. Unsupervised segmentation is performed by integrated active contours, combining the region and boundary information. Experimental results on statistical and structural component textures show improved discriminative ability of the features compared to some recent algorithms in the literature.
机译:本文提出将低阶高斯马尔可夫随机场(GMRF)模型参数的局部分布作为无监督纹理分割的纹理特征,而不是将模型参数用作纹理特征,而是利用模型拟合在局部中发现的参数估计值的变化给定像素周围的区域。空间局部估计过程是通过采用中等较小估计窗口的最大似然方法执行的,该估计窗口导致对属于局部区域的部分纹理特征进行建模。因此,估计中出现明显的波动,这可能与纹理图案的复杂性有关。估计中发生的变化通过归一化的局部直方图进行量化。为直方图计算选择准确的窗口大小至关重要,这是通过基于纹理熵的技术来实现的。这些纹理特征扩展了使用相对较低阶的GMRF模型参数将细小到非常大的纹理图案进行分割的可能性,并提供了较低的计算成本。较小的估计窗口会导致更好的边界定位。无监督分割是通过集成活动轮廓,结合区域和边界信息来执行的。统计和结构组件纹理的实验结果表明,与文献中的某些最新算法相比,这些特征具有更好的判别能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号