首页> 外文期刊>IEEE Transactions on Image Processing >A Markov random field model-based approach to unsupervised texture segmentation using local and global spatial statistics
【24h】

A Markov random field model-based approach to unsupervised texture segmentation using local and global spatial statistics

机译:基于局部和全局空间统计的基于Markov随机场模型的无监督纹理分割方法

获取原文
获取原文并翻译 | 示例

摘要

Many studies have proven that statistical model-based texture segmentation algorithms yield good results provided that the model parameters and the number of regions be known a priori. In this correspondence, we present an unsupervised texture segmentation method that does not require knowledge about the different texture regions, their parameters, or the number of available texture classes. The proposed algorithm relies on the analysis of local and global second and higher order spatial statistics of the original images. The segmentation map is modeled using an augmented-state Markov random field, including an outlier class that enables dynamic creation of new regions during the optimization process. A Bayesian estimate of this map is computed using a deterministic relaxation algorithm. Results on real-world textured images are presented.
机译:许多研究证明,只要事先知道模型参数和区域数量,基于统计模型的纹理分割算法就可以取得良好的效果。在这种对应关系中,我们提出了一种无监督的纹理分割方法,该方法不需要有关不同纹理区域,它们的参数或可用纹理类别的数量的知识。该算法基于对原始图像的局部和全局二阶及更高阶空间统计的分析。分割图是使用增强状态马尔可夫随机字段建模的,其中包括一个离群值类,该类能够在优化过程中动态创建新区域。使用确定性松弛算法计算该图的贝叶斯估计。呈现了真实纹理图像的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号