首页> 外文OA文献 >Weighted Association Rule Mining using Weighted Support and Significance Framework
【2h】

Weighted Association Rule Mining using Weighted Support and Significance Framework

机译:基于加权支持和意义框架的加权关联规则挖掘

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We address the issues of discovering significant binary relationships in transaction datasets in a weighted setting. Traditional model of association rule mining is adapted to handle weighted association rule mining problems where each item is allowed to have a weight. The goal is to steer the mining focus to those significant relationships involving items with significant weights rather than being flooded in the combinatorial explosion of insignificant relationships. We identify the challenge of using weights in the iterative process of generating large itemsets. The problem of invalidation of the “downward closure property” in the weighted setting is solved by using an improved model of weighted support measurements and exploiting a “weighted downward closure property”. A new algorithm called WARM (Weighted Association Rule Mining) is developed based on the improved model. The algorithm is both scalable and efficient in discovering significant relationships in weighted settings as illustrated by experiments performed on simulated datasets.
机译:我们解决了在加权设置中发现交易数据集中重要的二进制关系的问题。传统的关联规则挖掘模型适用于处理加权的关联规则挖掘问题,其中每个项目均具有权重。目标是将挖掘重点转移到那些具有重要权重的重要关系上,而不是在无关紧要的组合爆炸中淹没。我们确定在生成大型项目集的迭代过程中使用权重的挑战。通过使用加权支持度量的改进模型并利用“加权向下封闭属性”,可以解决加权设置中“向下封闭属性”无效的问题。基于改进的模型,开发了一种称为WARM(加权关联规则挖掘)的新算法。如在模拟数据集上进行的实验所示,该算法在发现加权设置中的重要关系时既可扩展又高效。

著录项

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号