首页> 外文期刊>International journal of computer science and network security >Weighted Support Association Rule Mining using Closed Itemset Lattices in Parallel
【24h】

Weighted Support Association Rule Mining using Closed Itemset Lattices in Parallel

机译:并行使用封闭项集格的加权支持关联规则挖掘

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new algorithm which associates weight to each item in the transaction database based on the significance of the corresponding item. Weighted support is calculated using the weight and the frequency of occurrence of the item in the transactions. This weighted support is used to find the frequent itemsets. We partition the database among 'N' processors and generate closed frequent itemsets in parallel. The parallel algorithm used minimizes communication by exchanging only weighted supports among the processors. We generate closed frequent itemsets to reduce the number of itemsets and also as all frequent itemsets can be obtained from closed frequent itemsets, we are not losing any interesting and significant itemsets. The performance of the proposed algorithm is compared to count distribution algorithm in terms of scaleup, speedup, sizeup and is shown that the proposed algorithm performs better.
机译:在本文中,我们提出了一种新算法,该算法根据相应项目的重要性将权重与交易数据库中的每个项目相关联。加权支持使用交易中项目的权重和出现频率进行计算。此加权支持用于查找频繁项集。我们在“ N”个处理器之间划分数据库,并并行生成封闭的频繁项目集。通过在处理器之间仅交换加权支持,所使用的并行算法将通信减至最少。我们生成封闭的频繁项目集以减少项目集的数量,并且由于可以从封闭的频繁项目集获得所有频繁项目集,因此我们不会丢失任何有趣且重要的项目集。将该算法的性能在规模,速度,大小上与计数分布算法进行了比较,结果表明该算法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号