首页> 外文OA文献 >An improved switching hybrid recommender system using naive Bayes classifier and collaborative filtering
【2h】

An improved switching hybrid recommender system using naive Bayes classifier and collaborative filtering

机译:一种改进的切换混合推荐系统,采用朴素贝叶斯分类器和协同过滤

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recommender Systems apply machine learning and data mining techniques for filtering unseen information and can predict whether a user would like a given resource. To date a number of recommendation algorithms have been proposed, where collaborative filtering and content-based filtering are the two most famous and adopted recommendation techniques. Collaborative filtering recommender systems recommend items by identifying other users with similar taste and use their opinions for recommendation; whereas content-based recommender systems recommend items based on the content information of the items. These systems suffer from scalability, data sparsity, over specialization, and cold-start problems resulting in poor quality recommendations and reduced coverage. Hybrid recommender systems combine individual systems to avoid certain aforementioned limitations of these systems. In this paper, we proposed a unique switching hybrid recommendation approach by combining a Naive Bayes classification approach with the collaborative filtering. Experimental results on two different data sets, show that the proposed algorithm is scalable and provide better performance – in terms of accuracy and coverage – than other algorithms while at the same time eliminates some recorded problems with the recommender systems.
机译:推荐系统应用机器学习和数据挖掘技术来过滤看不见的信息,并可以预测用户是否需要给定资源。迄今为止,已经提出了许多推荐算法,其中协作过滤和基于内容的过滤是两种最著名和采用的推荐技术。协同过滤推荐器系统通过识别具有相似品味的其他用户并使用他们的意见进行推荐来推荐商品;基于内容的推荐系统根据项目的内容信息来推荐项目。这些系统存在可伸缩性,数据稀疏性,过度专业化和冷启动问题,从而导致质量建议不佳和覆盖范围减小。混合推荐系统将各个系统组合在一起,以避免这些系统的某些前述限制。在本文中,我们通过将朴素贝叶斯分类方法与协作过滤相结合,提出了一种独特的切换混合推荐方法。在两个不同数据集上的实验结果表明,与其他算法相比,该算法具有可扩展性,并且在准确性和覆盖范围方面都具有更好的性能,同时消除了推荐系统的某些记录问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号