首页> 外文OA文献 >An approach to computing topographic wetness index based on maximum downslope gradient
【2h】

An approach to computing topographic wetness index based on maximum downslope gradient

机译:一种基于最大下坡梯度计算地形湿度指数的方法

摘要

As an important topographic attribute widely-used in precision agriculture, topographic wetness index (TWI) is designed to quantify the effect of local topography on hydrological processes and for modeling the spatial distribution of soil moisture and surface saturation. This index is formulated as TWI = ln(a/tan beta), where a is the upslope contributing area per unit contour length (or Specific Catchment Area, SCA) and tan beta is the local slope gradient for estimating a hydraulic gradient. The computation of both a and tan beta need to reflect impacts of local terrain on local drainage. Many of the existing flow direction algorithms for computing a use global parameters, which lead to unrealistic partitioning of flow. beta is often approximated by slope gradient around the pixel. In fact, the downslope gradient of the pixel is a better approximation of beta. This paper examines how TWI is impacted by a multiple flow routing algorithm adaptive to local terrain and the employment of maximum downslope gradient as beta. The adaptive multiple flow routing algorithm partitions flow by altering the flow partition parameter based on local maximum downslope gradient. The proposed approach for computing TWI is quantitatively evaluated using four types of artificial terrains constructed as DEMs with a series of resolutions (1, 5, 10, 20, and 30 m), respectively. The result shows that the error of TWI computed using the proposed approach is generally lower than that of TWI by the widely used approach. The new approach was applied to a low-relief agricultural catchment (about 60 km(2)) in the Nenjiang watershed, Northeastern China. The results of this application show that the distribution of TWI by the proposed approach reflects local terrain conditions better.
机译:作为精密农业中广泛使用的重要地形属性,地形湿度指数(TWI)旨在量化局部地形对水文过程的影响,并用于模拟土壤湿度和表面饱和度的空间分布。该指数公式为TWI = ln(a / tan beta),其中a是每单位轮廓长度的上坡贡献面积(或特定汇水面积,SCA),tan beta是用于估算水力坡度的局部坡度。 a和tan beta的计算都需要反映局部地形对局部排水的影响。许多现有的用于计算用户使用的流向算法都使用全局参数,这导致对流进行不切实际的划分。 β通常由像素周围的斜率梯度来近似。实际上,像素的下坡梯度是β的更好近似值。本文研究了适应当地地形的多重流路由算法以及采用最大下坡度梯度的beta对TWI的影响。自适应多流路由算法通过基于局部最大下坡梯度更改流分配参数来划分流。使用构造为DEM的四种类型的人工地形分别对一系列分辨率(1、5、10、20和30 m)进行定量评估,提出的计算TWI的方法进行了评估。结果表明,所提方法计算出的TWI误差一般都小于被广泛采用的方法的TWI误差。该新方法已应用于中国东北嫩江流域的低浮雕农业流域(约60 km(2))。该应用程序的结果表明,所提方法的TWI分布更好地反映了当地的地形条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号