首页> 外文OA文献 >Materials integration for high-performance photovoltaics by wafer bonding
【2h】

Materials integration for high-performance photovoltaics by wafer bonding

机译:通过晶圆键合实现高性能光伏器件的材料集成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The fundamental efficiency limit for state of the art triple-junction photovoltaic devices is being approached. By allowing integration of non-lattice-matched materials in monolithic structures, wafer bonding enables novel photovoltaic devices that have a greater number of subcells to improve the discretization of the solar spectrum, thus extending the efficiency limit of the devices. Additionally, wafer bonding enables the integration of non-lattice-matched materials with foreign substrates to confer desirable properties associated with the handle substrate on the solar cell structure, such as reduced mass, increased thermal conductivity, and improved mechanical toughness. This thesis outlines process development and characterization of wafer bonding integration technologies essential for transferring conventional triple-junction solar cell designs to potentially lower cost Ge/Si epitaxial templates. These epitaxial templates consist of a thin film of single-crystal Ge on a Si handle substrate. Additionally, a novel four-junction solar cell design consisting of non-lattice matched subcells of GaInP, GaAs, InGaAsP, and InGaAs based on InP/Si wafer-bonded epitaxial templates is proposed and InP/Si template fabrication and characterization is pursued.ududIn this thesis the detailed-balance theory of the thermodynamic limiting performance of solar cell efficiency is applied to several device designs enabled by wafer bonding and layer exfoliation. The application of the detailed-balance theory to the novel four-junction cell described above shows that operating under 100 suns at 300 K a maximum efficiency of 54.9% is achievable with subcell bandgaps of 1.90, 1.42, 1.02, and 0.60 eV, a material combination achievable by integrating two wide-bandgap subcells lattice matched to GaAs and two narrow-bandgap subcells lattice matched to InP.ududWafer bonding and layer transfer processes with sufficient quality to enable subsequent material characterization are demonstrated for both Ge/Si and InP/Si structures. The H-induced exfoliation process in each of these materials is studied using TEM, AFM, and FTIR to elucidate the chemical states of hydrogen leading to exfoliation. Additionally, the electrical properties of wafer-bonded interfaces between bulk-Ge/Si and bulk-InP/Si structures are show Ohmic, low-resistance electrical contact. Further studies of p-p isotype heterojunctions in Ge/Si indicate that significant conduction paths exist through defects at the bonded interface. The first known instance of epitaxy of III-V compound semiconductors on wafer-bonded Ge/Si epitaxial templates is demonstrated. Additionally InGaAs is grown on InP/Si templates that have been improved by removal of damage induced by the ion implantation and exfoliation processes.
机译:接近现有技术的三结光伏器件的基本效率极限。通过允许将非晶格匹配的材料集成到单片结构中,晶圆键合使新型光伏器件具有更多的子电池,从而可以改善太阳光谱的离散度,从而扩展了器件的效率极限。另外,晶片键合使非晶格匹配的材料与异质衬底集成在一起,从而赋予与手柄衬底相关的太阳能电池结构所需的特性,例如质量减轻,导热性提高和机械韧性提高。本文概述了晶圆键合集成技术的工艺开发和表征,这些技术对于将传统的三结太阳能电池设计转移到潜在的低成本Ge / Si外延模板至关重要。这些外延模板由Si处理衬底上的单晶Ge薄膜组成。此外,提出了一种新颖的四结太阳能电池设计,该设计由基于InP / Si晶片键合外延模板的GaInP,GaAs,InGaAsP和InGaAs的非晶格匹配子电池组成,并致力于InP / Si模板的制造和表征。 ud ud在本文中,太阳能电池效率的热力学极限性能的详细平衡理论被应用于通过晶片键合和层剥离实现的几种器件设计。详细平衡理论在上述新型四结电池上的应用表明,在1.90、1.42、1.02和0.60 eV(一种材料)的子电池带隙下,在300 K的100个太阳下工作时,可实现54.9%的最大效率。通过集成两个与GaAs匹配的宽带隙子电池和两个与InP匹配的窄带子电池可实现的组合。晶圆键合和层转移工艺具有足够的质量以实现随后的Ge / Si和InP材料表征/ Si结构。使用TEM,AFM和FTIR研究了每种材料中H诱导的剥落过程,以阐明导致剥落的氢的化学状态。另外,块状Ge / Si和块状InP / Si结构之间的晶片键合界面的电性能显示为欧姆,低电阻电接触。对Ge / Si中p-p同型异质结的进一步研究表明,通过键合界面处的缺陷存在明显的导电路径。晶圆结合的Ge / Si外延模板上的III-V化合物半导体外延的第一个已知实例得到了证明。另外,InGaAs在InP / Si模板上生长,该模板已通过消除离子注入和剥落过程引起的损伤而得到了改善。

著录项

  • 作者

    Zahler James Michael;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号