首页> 外文OA文献 >Pose Estimation in Conformal Geometric Algebra : Part II, Real-time Pose Estimation Using Extended Feature Concepts
【2h】

Pose Estimation in Conformal Geometric Algebra : Part II, Real-time Pose Estimation Using Extended Feature Concepts

机译:共形几何代数中的姿态估计:第二部分,基于扩展特征概念的实时姿态估计

摘要

Part II uses the foundations of Part I [35] to define constraint equations for 2D-3D pose estimation of different corresponding entities. Most articles on pose estimation concentrate on specific types of correspondences, mostly between points, and only rarely use line correspondences. The first aim of this part is to extend pose estimation scenarios to correspondences of an extended set of geometric entities. In this context we are interested to relate the following (2D) image and (3D) model types: 2D point/3D point, 2D line/3D point, 2D line/3D line, 2D conic/3D circle, 2D conic/3D sphere. Furthermore, to handle articulated objects, we describe kinematic chains in this context in a similar manner. We ensure that all constraint equations end up in a distance measure in the Euclidean space, which is well posed in the context of noisy data. We also discuss the numerical estimation of the pose. We propose to use linearized twist transformations which result in well conditioned and fast solvable systems of equations. The key idea is not to search for the representation of the Lie group, describing the rigid body motion, but for the representation of their generating Lie algebra. This leads to real-time capable algorithms.
机译:第二部分使用第一部分[35]的基础来定义用于不同相应实体的2D-3D姿态估计的约束方程式。关于姿势估计的大多数文章都专注于特定类型的对应,主要是在点之间,并且很少使用线对应。本部分的首要目的是将姿势估计方案扩展到一组扩展的几何实体的对应关系。在这种情况下,我们有兴趣关联以下(2D)图像和(3D)模型类型:2D点/ 3D点,2D线/ 3D点,2D线/ 3D线,2D圆锥/ 3D圆,2D圆锥/ 3D球面。此外,为了处理铰接的物体,我们在这种情况下以类似的方式描述了运动链。我们确保所有约束方程式都以欧氏空间中的距离度量结尾,这在嘈杂的数据环境中是正确的。我们还将讨论姿势的数值估计。我们建议使用线性扭曲变换,以产生条件良好且可快速求解的方程组。关键思想不是寻找描述刚体运动的李群的表示,而是寻找其生成李代数的表示。这导致了具有实时能力的算法。

著录项

  • 作者

    Rosenhahn B.; Sommer G.;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号