首页> 外文OA文献 >Solution and interpolation of one-dimensional heat equation by using cran-nicolson, Cubic Spline and Cubic B-Spline
【2h】

Solution and interpolation of one-dimensional heat equation by using cran-nicolson, Cubic Spline and Cubic B-Spline

机译:用cran-nicolson,三次样条和三次B样条法求解和插补一维热方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The purpose of this study is to apply the technique of Cubic Spline, Cubic BSpline and Crank-Nicolson in one-dimensional heat equations with Dirichlet boundary conditions. Then, their accuracy of numerical methods are compared by computing their absolute error and relative error. Those results of the methods are calculated by using Matlab 2008 and Microsoft Visual Studio 2010 (C++). As the results, Crank- Nicolson is a good approximation solution since the result of relative error is quite close to the zero. Besides that, for interpolation method, cubic B-spline interpolation is found to give better results compare to the cubic spline interpolation since the relative error of cubic B-spline is better than cubic spline. Regarding to the findings, it can be seen clearly that the cubic spline, cubic B-spline and Crank-Nicolson are well approximated and give better results with smaller step size.
机译:本研究的目的是将三次样条,三次B样条和Crank-Nicolson技术应用于具有Dirichlet边界条件的一维热方程。然后,通过计算其绝对误差和相对误差,比较其数值方法的准确性。使用Matlab 2008和Microsoft Visual Studio 2010(C ++)计算这些方法的结果。结果,由于相对误差的结果非常接近零,因此Crank-Nicolson是一个很好的近似解。此外,对于插值方法,由于三次B样条的相对误差要优于三次样条,因此发现三次B样条的插值比三次样条的插值要好。根据发现,可以清楚地看到三次样条,三次B样条和Crank-Nicolson近似,并且以较小的步长给出更好的结果。

著录项

  • 作者

    Wan Sulaiman Wan Khadijah;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号