首页> 外文OA文献 >Detection of sensor failure in a palm oil fractionation plant using artificial neural network
【2h】

Detection of sensor failure in a palm oil fractionation plant using artificial neural network

机译:使用人工神经网络检测棕榈油分馏设备中的传感器故障

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Artificial neural network by virtue of its pattern recognition capabilities has been explored to systematically detect failures in process plants. In this paper, a two-stage approach integrating a neural network dynamic estimator and a neural network fault classifier is proposed to overcome the problem of malfunction in sensors. The process estimator was designed to predict the dynamic behavior of the normal or unfaulty operating process even in the presence of sensor failures. As such, any variables that are related or influenced by the failures under investigation cannot be used as model inputs. The difference between this estimated “normal� and the actual process measurements, termed the residuals are fed to the classifier for fault detection purposes. The classifier that was founded on feedforward network architecture then identifies the source of faults. The estimator was constructed using externally recurrent network where the estimated values are fed back to the input neurons as delayed signals. The scheme was implemented to detect sensor failure in a palm oil fractionation process. To generate the required simulation data, HYSYS.Plant dynamic process simulator was employed. The proposed scheme was successful in detecting pressure and temperature sensor failures introduced within the system.
机译:人工神经网络凭借其模式识别功能已被探索用于系统地检测过程工厂中的故障。本文提出了一种将神经网络动态估计器和神经网络故障分类器相结合的两阶段方法,以解决传感器故障的问题。该过程估计器旨在即使在出现传感器故障的情况下也能预测正常或无故障操作过程的动态行为。因此,与研究中的故障相关或受其影响的任何变量都不能用作模型输入。估计的“正常”之间的差异?然后将称为残差的实际过程测量值馈送到分类器,以进行故障检测。然后,基于前馈网络体系结构的分类器将识别故障源。估计器是使用外部递归网络构建的,其中估计值作为延迟信号反馈到输入神经元。实施该方案以检测棕榈油分馏过程中的传感器故障。为了生成所需的仿真数据,使用了HYSYS.Plant动态过程仿真器。所提出的方案成功地检测了系统中引入的压力和温度传感器故障。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号